Wildfire C++ Programming Style

Wildfire C++ Programming Style

With Rationale
by Keith Gabryelski

Wildfire Communications, Inc.
Wildfire: 617-674-1724
Fax: 617-674-1501
Email: ag@wildfire.com

Copyright © 1997 by Keith Gabryelski

This mirror was established with the express permission of the author.
Hereisthe original home page for this document.

1 Introduction
1.1 Background
2 Fundamental MetaRule
2.1 C++ isdifferent from C
3 Files
3.1 File Naming Conventions
3.2 File Organization

3.3 Header File Content
3.4 Source File Content

4 Preprocessor

4.1 Macros (#def i ne)
4.2 Conditional Compilation (#i f and itsilk)

5 ldentifier Naming Conventions

5.1 General Rules

5.2 Identifier Style

5.3 Namespace Clashes

5.4 Reserved Namespaces
6 Using White Space

6.1 Indentation

6.2 LongLines

6.3 Comments

6.4 Block Comments

6.5 Single-Line Comments

6.6 Trailing Comments

7 Types
7.1 Constants
7.2 Use of const
7.3struct anduni on Declarations
7.4 enum Declarations
7.5 Classes

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (1 of 40) [10/1/2000 6:52:23 PM]

http://www.wildfire.com/~ag/Engineering/Development/C++Style/

Wildfire C++ Programming Style

7.6cl ass Declarations

7.7 Class Constructors and Destructors

7.8 Automatically-Provided Member Functions
7.9 Function Overloading

7.10 Operator Overloading

7.11 Protected items

7.12 friends

7.12.1fri end Classes
7.12.2 friend Methods

7.13 Templates
8 Variables
8.1 Placement of Declarations
8.2 ext er n Declarations
8.3 Indentation of Variables
8.4 Number of Variables per Line

8.5 Definitions Hiding Other Definitions
8.6 Initialized Variables

9 Functions

9.1 Function Declarations
9.2 Function Definitions

10 Statements

10.1 Compound Statements
10.2i f / else Statements
10.3 for Statements

10.4 do Statements

10.5 while Statements

10.6 Infinite Loops

10.7 Empty L oops

10.8 switch Statements
10.9 got o Statements
10.10r et ur n_Statements
10.11try/cat ch Statements

11 Miscellaneous

11.1 General Comments & Rules
11.2 Limits on numeric precision
11.3 Comparing against Zero

11.3.1 Boolean
11.3.2 Character

11.3.3 Integral
11.3.4 Floating Point

11.3.5 Pointer

11.4 Useand Misuseof i nl i ne
11.5 References vs. Pointers
11.6 Portability

12 Interaction with C
12.1 ANSI-C/C++ includefiles:

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (2 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style
12.2 Including C++ Header Filesin C programs
12.3 Including C Header Filesin C++
12.4 C Code calling C++ Libraries

1 Introduction
1.1 Background

This document defines the C++ coding style for Wildfire, Inc. It also triesto provide guidelines on how to use the various
features found in the C++ language. The establishment of a common style will facilitate understanding and maintaining code
developed by more than one programmer as well as making it easier for several people to cooperate in the development of the
same program. In addition, following a common programming style will enable the construction of tools that incorporate
knowledge of these standards to help in the programming task.

Using a consistent coding style throughout a particular module, package, or project isimportant because it allows people other
than the author to easily understand and (hopefully) maintain the code. Most programming styles are somewhat arbitrary, and
this oneis no exception. In the places where there were choices to be made, we attempted to include the rationale for our
decisions.

This document contains rationale for many of the choices made. Rationale will be presented with this paragraph style.

One more thing to keep in mind is that when modifying an existing source file, the modifications should be coded in the same
style asthe file being modified. A consistent style isimportant, even if it isn't the one you usually use.

However, there are many variations in style that do not interfere with achieving these goals. This style guide is intended to be
the minimum reasonabl e set of rules that accomplish these ends. It does not attempt to answer all questions about where ever
character should go. We rely upon the good judgement of the programmer as much as possible.

This guide presents things in "programming order", that is, notes, rules, and guidelines about a particular programming
construct are grouped together. In addition, the sections are in an order that approximates that used to write programs.

The section Miscellaneous on page 32 contains many useful tidbits of information that didn't fit well into any of the other
sections.

Finaly, thereis aBibliography and Reading List at the end of this document that contains quite afew titles. Many of the books
there should be considered mandatory reading --- if nothing else, buy and read a copy of both the ARM [10] by Ellis &
Stroustrup and Effective C++ [12] by Scott Meyers. Coplien's Advanced C++ Programming Syles and Idioms [13] isaso
highly recommended.

2 Fundamental MetaRule

A good style guide can enhance the quality of the code that we write. This style guide tries to present a standard set of methods
for achieving that end.

It is, however, the end itself that isimportant. Deviations from this standard style are acceptable if they enhance readability and
code maintainability. Mg or deviations require a explanatory comment at each point of departure so that later readers will
know that you didn't make a mistake, but purposefully are doing alocal variation for a good cause.

A good rule of thumb is that 10% of the cost of a project goes into writing code, while more than 50% is spent on maintaining
it. Think about the trade-offs between ease-of-programming now vs. ease-of-maintenance for the next 5 to 10 years when you
consider the rules presented here.

2.1 C++is different from C

The C++ programming language differs substantially from the C programming language. In terms of usage, C is more like
Pascal than it islike C++. This style guide differs from traditional C style guidesin places where the "C mindset” is
detrimental to the object-oriented outlook desired for C++ devel opment.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (3 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF23424
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF79763

Wildfire C++ Programming Style
3 Files

Code should compile without errors or warnings. "Compile" in this sense appliesto | i nt -like code analyzers, a
standard-validating compilers (ANSI-C++, POSIX, Style Guide Verification, etc.), and C++ compilers on all supported
hardware/software platforms.

3.1 File Naming Conventions

Try to pick filenames that are meaningful and understandable. File names are not limited to 14 characters. The following table
shows the file naming conventions we will use:

File Contents Nane

C++ Source Code filenane. cc
C++ Header File fil enane. hh
C Source Code filenane.c
C Header File filenane. h
bj ect Code filenane.o
Archive Libraries filenane. a
Dynam c Shared Libraries filenane.so.<ver>
Shel |l Scripts filenamne. sh
Yacc/ C Sour ce Code filenane.y
Yacc/ C++ Source Code filenane.yy
Lex/ C Source Code filenane. |
Lex/ C++ Source Code filenane. ||
Directory Contents READVE
Build rules for nake Makefil e

POS X specifies a maximum of 14 characters for filenames, but in practice this limit is too restrictive: source control systems
like RCSand SCCSuse 2 characters; the IDL compiler generates names with suffixes appended, etc.

3.2 File Organization

« Although there is no maximum length requirement for source files, files with more than about 1000 lines are
cumbersome to deal with.

« Lineslonger than 80 columns should be avoided. Use C++'s string concatenation to avoid unwieldy string literals and
break long statements onto multiple lines. (See Long Lines on page 10):

char *s1 = "hello\n"
"wor | d\ n"; /1l sl is exactly the sane as s2,
char *s2 = "hell o\ nworld\n";

Theline length limit is related to the fact that many printers and terminals are limited to an 80 character line length. Source
code that has longer lines will cause either line wrapping or truncation on these devices. Both of these behaviors result in code
that is hard to read.

« No#pr agma directive should be used.

#pr agna directives are, by definition, non-standard, and can cause unexpected behavior when compiled on other systems.
On another system, a #pr agma might even have the opposite meaning of the intended one.

In some cases #pr agma is a necessary evil. Some compilers use #pr agna directives to control template instantiations. In
these rare cases the #pr agma usage should be documented and, if possible, #i f def directives should be to ensure other
copilersdon't trip over the usage. (See#error directi ve and 4.2 Conditional Compilation (#i f and itsilk)

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (4 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style
3.3 Header File Content

Header files should be functionally organized, with declarations of separate subsystems placed in separate header files. For
class definitions, header files should be treated as interface definition files.

« Declarerelated class and types that are likely to be used together in a single header file.

« If aset of declarationsislikely to change when code is ported from one machine to another, put them into a separate
header file.

« Never declare static variables or non-member static function prototypes in a header file.
« Never define variablesin aheader file.

« Private header files which are used only by a specific implementation should live with that implementation’s source code
(for example, in the same directory), and be included using the #i ncl ude " name" construct.

« Header files that are designed to be includable by both C and C++ code have different rules. See Interaction with C, §
12.

The required ordering in header filesis as follows:
1. A "stand-alone" copyright notice such as that shown below (1) :

/'l Copyright 1992 by WIdfire Comunications, Inc.
/'l remai nder of WIldfire copyright notice

Don't place anything other than the copyright text in this comment --- the whole comment will be replaced programmatically to
update the copyright text.

1. An#i f ndef that checks whether the header file has been previously included, and if it has, ignores the rest of the file.
The name of the variable tested looks like _WF_FILE_HH, where"FI LE_HH" isreplaced by the header file name,
using underscore for any character not legal in an identifier. Immediately after the test, the variable is defined.

#i fndef _WF_FI LENAVE_HH
#define WE_FI LENAVE_HH

1. A block comment describing the contents of the file. A description of the purpose of the entitiesin the filesis more
useful than just alist of class names. Keep the description short and to the point.

2. TheRCS $Header $ variable should be placed as the end of the block comment, or in a comment immediately
following it:

/1 $Header $
1. #include directives. Every header file should be self-sufficient, including all other header files it needs.

Snce implementations will change, code that places "implementation-required #includes® in clients could cause them to
become tied to a particular implementation.

The following items are a suggested order. There will be many times where this ordering is inappropriate, and should be
changed.

1. const declarations.

2. Forwardcl ass, struct, and uni on declarations.
3. struct oruni on declarations.

4. t ypedef declarations.

5. cl ass declarations.

The rest of these items should be in found this order at the end of the header file.

1. Global variable declarations (not definitions). Of course, global variables should be avoided, and should never be used
ininterfaces. A class scoped enumor const can be used to reduce the need for globals; if they are still required they
should be either file-scope st at i ¢ or declared ext er n in aheader file.

2. External declarations of functionsimplemented in this module.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (5 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

3. The header guard's#endi f need be followed by acomment describing the #i f def head guard.
After all, it isthe last directive in the file and should obvious.

3.4 Source File Content

« Do not place the implementation of more than one interface in a single source file. (Classes private to an implementation
may be declared and defined within the same source file.)

« Theordering of sections for implementation filesis as the same as for header files through step [10], but without the
#i f ndef / #endi f multipleinclusion guard (see Template for C++ Implementation files on page 45). After that the
order should be:

1. Global scope variable definitions. Global variables (both external and file-static) are problematic in a multi-threaded
and/or in areentrant server context. They should be avoided. (Thisis also aproblem for non-const class static member
variables.)

2. Filescope (st at i c) variable definitions.
3. Function definitions. A comment should generally precede each function definition.

4 Preprocessor

« Preprocessor directives must always have the # in column 1. No indentation allowed for preprocessor directives.
« Don't use absolute path names when including header files. Use the form

#i ncl ude <nodul e/ nane>

to get public header filesfrom a standard place. The - | option of the compiler is the best way to handle the pseudo-public
"package private" header files used when constructing libraries--- it permits reorganizing the directory structure without
altering sourcefiles.

4.1 Macros (#def i ne)

Macros are amost never necessary in C++.
o Theconstruct #def i ne NAME val ue should never beused. Useaconst or enuminstead.

The debugger can deal with them symbolically, while it can't with a#def i ne, and their scope is controlled and they only
occupy a particular namespace, while #def i ne symbols apply everywhere except inside strings.
« Macrosin C are frequently used to define "maximum" sizes for things. This results in data structures that impose
arbitrary size restrictions on their usage, a particularly insidious source of bugs. Try not to carry forward this limitation
into C++.

« Consider using inline functions instead of parametrized macros (but see Use and Misuse of inline, 8 11.4 first!).

Macros should be used to hide the ## or #par amfeatures of the preprocessor and encapsulate debugging aids such as
assert () . (Codethat usesthese features should be rare.) If you find that you must use macros, they must be defined so that
they can be used anywhere a statement can. That is, they can not end in a semicolon. To accomplish this, multi-statement
macros that cannot use the comma operator should use ado/whi | e construct:

#def i ne ADD(sys, val) do { \
if (!known_##sys(val)) \
add_##sys(val);\
} while(0)

Thisallows ADD() to be used anywhere a statement can, eveninsideani f /el se construct:
i f (doAdd)

ADD(nane, "Corw n");
el se

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (6 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF53116

Wildfire C++ Programming Style
sonet hi ngEl se();

It isaso robust in the face of a missing semicolon between the ADD() and theel se.

This technique should not be used for paired begin/end macros. In other words, if you have macros that bracket an operation,
do not put ado in the begin macro and its closing whi | e in the end macro.

Thismakes any br eak or cont i nue between the begin and end macro invocations relative to the hidden do/whi | e loop,
not any outer containing loop.

4.2 Conditional Compilation (#i f and its ilk)

In general, avoid using #i f def . Modularize your code so that machine dependencies are isolated to different files and beware
of hard coding assumptions into your implementation.

o The# of all preprocessor commands must always be in column 1.
« Never useindentation for preprocessor directives.

« Ifyouuse#i f def to select among aset of configuration options, you need to add afinal #el se clause containing a
#err or directive so that the compiler will generate an error message if none of the options has been defined:

#i fdef sun

#defi ne USE_MOTI F
#defi ne RPC_ONC

#el i f hpux

#def i ne USE_OPENLOCK
#defi ne RPC_OSF

#el se
#error unknown nmachi ne type

#endi f

« Test for features, not for systems, since features sometimes get added to systems. For example, if you are writing code
that deals with networking, you should define and test for macros like USE_STREANMS or USE_SCOCKETS, not for
predefined system names like sun, hpux, SYSV, etc., that you happen to "know" support one or the other form.

« Never change the language's syntax via macro substitution. For example, do not do the following:

#defi ne BEG N { /| EXTREMELY BAD STYLE!!!
#def i ne when br eak; case /| EXTREMELY BAD STYLE!!!
This makes the program unintelligible to all but the perpetrator. C++ ishard enough to read asit is.

. #el se,#el if,and#endi f should have commented tags identifying the #i f construct to which it is attached if there
are several levels of ifdefs or more than a page worth of code is placed between the #i f def and #endi f .

#i fdef RPC_ONC
doONCSt uf f () ;
#endi f

« Itisconsidered extremely distasteful, and therefore to be avoided wherever possible, to have a preprocessor conditional
that changes the blocking. When you do, the curly-brace rules may be broken:

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (7 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

#i f def DEBUG
i f (!debug) /1 #ifdef breaks standard braces rule
#endi f
{
doSomeSt uf f () ;
doMoreSt uff () ;

}

5 Identifier Naming Conventions

Identifier naming conventions make programs more understandable by making them easier to read. They aso give information
about the purpose of the identifier. Each subsystem should use the same conventions consistently. For example, if the variable
of f set holds an offset in bytes from the beginning of afile cache, the same name should not be used in the same subsystem
to denote an offset in blocks from the beginning of thefile.

We have made an explicit decision to not use Hungarian Notation.(2)
5.1 General Rules

« ldentifiers should be meaningful. That is, they should be easy to understand and provide good documentation about
themselves. Avoid abbreviations, especially ad hoc ones.

Well chosen names go a long way toward making a program self-documenting. What is an obvious abbreviation to you may be
baffling to others, especially in other parts of the world. Abbreviations make it hard for othersto remember the spelling of
your functions and variables. They also obscure the meaning of the code that uses them.

« Single character variable names should be avoided because of the difficulty of maintaining code that uses them.
However, single character names may be appropriate for variables that are essentially meaningless, such as dummy loop
counters with short loop bodies or temporary pointer variables with short lifetimes.

« Avoid variables that contain mixtures of the numbers 0 & | and the letters O and 1, because they are hard to tell apart.

« Avoid identifiersthat differ only in case, likef 0o and FOO. Having a type name and a variable differing in only in case
(suchasString string;)ispermitted, but discouraged.

5.2 Identifier Style

Identifiers are either upper caps, mixed case, or lower case. If anidentifier is upper caps, word separation in multi-word
identifiers is done with an underscore (for example, RUN_QUI CK). If an identifier is mixed case, it starts with a capital, and
word separation is done with caps (for example, RunQui ck). If anidentifier islower case, words are separated by underscore
(for example, r un_qui ck). Preprocessor identifiers and template parameters are upper case. The mixed case identifiers are
global variables, function names, types (including class names), class data members, enum members. Local variables and class
member functions are lower case.

Template parameter names act much like #def i ne identifiers over the scope of the template. Making them upper case calls
them out so they are readily identifiable in the body of the template.

Aninitial or trailing underscore should never be used in any user-program identifiers.(3)

Prefixes are given for identifiers with global scope (some packages may extend the prefixes for their identifiers):

Prefix Used for

pr eprocessor

hi dden preprocessor (e.g., protecting synbols for header file)
d obal scope (gl obal variables, functions, type names).
File-static scope

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (8 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

File-static identifiers, are the only exception: they are mixed case, but start with alower-case prefix. (for example,
wf Fi | eSt ati cVar).

5.3 Namespace Clashes

The goal of this section is to provide guidance to minimize potential name clashesin C++ programs and libraries.

There are two solution strategies: (1) minimize the number of clashable names, or (2) choose clashable names that minimize
the probability of aclash. Strategy (1) is preferable, but clashable names cannot be totally eliminated.

Clashable namesinclude: external variable names, external function names, top-level class names, type names in public header
files, class member namesin public header files, etc. (Class member names are scoped by the class, but can clash in the scope
of aderived class. Explicit scoping can be used to resolve these clashes.)

There are two kinds of name clash problem:

1. Clashesthat prevent two code modules from being linked together. This problem affects external variable names,
external function names, and top-level class names.

2. Clashesthat cause client code to fail to compile. This problem affects type namesin public header files, and class
member names in public header files. It ismost egregious in the case of names that are intended to be private, such as
the names of private class members, as a new version of the header file with new private names could cause old client
code to break.

Solutions:

Minimize the number of clashable names by:

Avoiding the use of external variables and functions, in favor of class data members and function members.
Minimizing the number of top-level classes, by using nested classes.

Minimizing the number of private class members declared in public header files. Private class members should be
defined in public header files only where clients need to perform implementation inheritance. To minimize the number
of dependencies on the data representation, define a single private data member of an opaque pointer type that pointsto
the real data representation whose structure is not published.

« Minimize the likelihood of clashes by use distinctive prefixes in clashable identifiers.

W NP e

Exception: A top-level class name used only as a naming scope can consist entirely of a distinctive prefix.

W Render i ngCont ext (a type nane)

WPrint() (a function nane)

W Set TopVi ew() (a function nane)

W Mast er | ndex (a variabl e nane)

W::String (a type nane --- the class nane serves as prefix)

For components of the Wildfire program, prefixes begin with W .
5.4 Reserved Namespaces

Listed below are explicitly reserved names which should not be used in human-written code (it may be permissible for
program generators to use some of these).

« Fromthe ANSI C Specification (9899:1990(E)) 7.1.3: "All identifiers that begin with an underscore and either an
uppercase |etter or another underscore are always reserved”.

[A-Z][0-9A-Za-z_]*
« "All identifiersthat begin with an underscore are always reserved for use as identifiers with file scope.”

[a-z][0-9A-Za-z]*

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (9 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style
« Thefollowing names are also reserved by ANSI for its future expansion:

E[0- 9A- Z] [0- 9A- Za- z] * errno val ues

i s[a-z][0-9A-Za-z] * Character classification

to[a-z] [0-9A-Za-z] * Char acter mani pul ati on

LC [0-9A-Za-z_]* Local e

SIG _A-Z][0-9A-Za-z_]* Si gnal s
str[a-z][0-9A-Za-z_]* String mani pul ation

menf a-z] [0-9A-Za-z] * Menory mani pul ation
wecs[a-z][0-9A-Za-z_]* W de character manipul ation

Note that the first three namespaces are hard to avoid. In particular, many accessor methods naturally fall into thei s*
namespace, and error conditions map onto the E* namespace. Be aware of these conflicts and make sure that you are not
redefining existing identifiers.

6 Using White Space

Blank lines and blank spacesimprove readability by offsetting sections of code that are logically related. A blank line should
always be used in the following circumstances:

« After the#i ncl ude section.

« When switching from preprocessor directives to code or vice versa.

o Aroundcl ass, struct,anduni on declarations.

« Around function definitions.

« Before groups of switch statement case labels that are logically grouped together.

The guidelines for using spaces are:
« A space must follow a keyword whenever anything besidesa; follows the keyword.
« Spaces may not be used between procedure names and their argument list.

/'l no space between 'strcnp' and ' (',
/'l but space between "if' and ' ('

if (strcnp(input_value, "done") == 0)
return O;

This helps to distinguish keywords from procedure calls.
« Spaces must appear after the commas in argument lists.
« There should be no spaceson either sideof [] () . ->

« All other binary operators nust be separated fromtheir operands by spaces. In
ot her words, spaces shoul d appear around assignnent, arithnmetic, relational, and
| ogi cal operators, and they should not appear around .and->.

« Spaces must never separate unary operators such as unary minus, address of, indirection, increment, and decrement from
their operands. Some judgment is called for in the case of complex expressions, which may be clearer if the "inner"
operators are not surrounded by spaces and the "outer" ones are. Remember that temporary variables are "cheap”, and
that several ssimpler expressions may be more understandabl e than one long complicated one.

« Spaces precede an open brace that shares aline, and follow a closing brace that shares aline.
« Theexpressionsinaf or statement must be separated by spaces:

for (exprl; expr2; expr3) {

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (10 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

« If you know you are constructing an object with a cast, you should use the function form (for example, St ri ng(sp))
as aclueto the reader.

o Form-feeds must never be used.

« Using extrawhite spaceto line up related thingsin a set of lines can be worthwhile; such "violations" of the standard do
not require the otherwise-mandatory expiatory comment (see Fundamental MetaRule, § 2).

start=(a <b ? a: b);
end= (a >b ? a: b);

6.1 Indentation

Only four-space line indentation should be used. The exact construction of the indentation (spaces only or tabs and spaces) is
left unspecified. However, you may not change the settings for hard tabs in order to accomplish this. Hard tabs must be set
every 8 spaces.

If this rule was not followed tabs could not be used since they would lack a well-defined meaning.

The rules for how to indent particular language constructs are described in Statements, 8 10.

6.2 Long Lines

Occasionally an expression will not fit in the available space in aline; for example, a procedure call with many arguments, or a
logical expression with many conditions. Such occurrences are especially likely when blocks are nested deeply or long
identifiers are used.

« If along line needsto be broken up, you need to take care that the continuation is clearly shown. For example, the
expression could be broken after the last comma of afunction call (never in the middle of a parameter expression), or
after the last operator that fits on the line. If they are needed, subsequent continuation lines could be broken in the same
manner, and aligned with each other.

if (LongLogical Testl || LongLogical Test2 ||
LongLogi cal Test3) {

}

a = (long_identifier_terml --- long_identifier_tern) *
| ong_identifier_ternB;
If there were some correlation among the terms of the expression, it might also be written as:

if (Thi sLongExpression < 0 ||
Thi sLongExpressi on > max_si ze ||
Thi sLongExpressi on == SoneQ her LongExpr essi on) {

}

Placing the line break after an operator alerts the reader that the expression is continued on the next line. If the break were to
be done before the operator, the continuation is less obvious.

Note a so that, since temporary variables are cheap (an optimizing compiler will generate similar code whether or not you use
them), they can be an aternative to a complicated expression:

tenpl = LongLogi cal Test 1;
tenp2 = LonglLogi cal Test 2;
tenp3 = LonglLogi cal Test 3;

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (11 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

if (tenpl || temp2 || tenmp3) {
}
6.3 Comments

Comments should be used to give an overview of the code and provide additional information that is not readily
understandable from the code itself. Comments should only contain information that is germane to reading and understanding
the program.

« Ingenerd, avoid including in comments information that is likely to become out-of-date. For example, information
about how the corresponding package is built or in what directory it resides should not be included as acomment in a
source file. Discussion of nontrivial design decisionsis appropriate, but avoid duplicating information that is present in
(and clear from) the code. It istoo easy for such redundant information to get out-of-date.

o C++ stylecomments(/ /) are preferred over C style (/ *. . . * /), though both are permitted.
« Comments should never include special characters, such as form-feed and backspace.

« Frequently thereis a need to leave reminders in the code about uncompleted work or special cases that are not handled
correctly. These comments should be of the form:

/11" \When we can, replace this code with a wonbat -aut hor

This gives maintainers some idea of whom to contact. It also allows one to easily gr ep the source looking for unfinished
areas.

6.4 Block Comments

Block comments are used to describe afile's contents, a function's behavior, data structures, and algorithms.
« Block comments should be used at the beginning of each file and before each function.

« Thecomment at the beginning of the file containing mai n() should include a description of what the program does.
The comments at the beginning of other files should just describe that file.

« Theblock comment that precedes each function should document its behavior, input parameters, algorithm, global
variables used, and returned value.

« Comments may not have aright-hand line (such as the right edge of a box) drawn with asterisks or other characters.

This would require anyone changing the text in the box to continually deal with keeping the right-hand line straight.

« Inmany cases, block comments inside a function are appropriate and should be indented at |east to the same indentation
level asthe code that they describe. A block comment should be preceded by a blank line, empty comment lines, or
otherwise visually separated from the rest of the code. A separation after the block comment is optional, but be
consistent.

statenents;

/'l anot her bl ock comrent

/'l made up of C++ style comments
statements;

/*

* Here is a Cstyle bl ock comrent
* that takes up multiple lines.
*/

statenents;

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (12 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

6.5 Single-Line Comments

Short comments may appear on asingle line indented at |east to the indentation level of the code that follows.

if (argc > 1) {
/'l Get option fromthe conmand |ine.

}

6.6 Trailing Comments

Very short comments may appear on the same line as the code they describe, but should be tabbed over far enough to separate
them from the statements. Trailing comments are useful for documenting declarations.

« If multiple trailing comments are used in a block of code, they all should be tabbed to the same level.

if (a==2)
return W True; /'l special case
el se
return is_prime(a); /'l works only for odd a

« Avoid the assembly language style of commenting every line of executable code with atrailing comment.

7 Types
7.1 Constants

« Numerical constants must be coded so that they can be changed in exactly one place. The usual method to define
constantsisto useconst or enum (See Macros (#define) on page 5.) The enumdatatypeis the preferred way to
handle situations where a variable takes on only a discrete set of values because of the added type checking done by the
compiler:

cl ass Foo

{
public:
enum {
Success = 0, Failure = -1
s

}

if (foothing.foo _nethod("Argunent") == Foo0:: Success)
« Unlikein ANSI C, integral typed objectsin C++ that are declared const and initialized with compile-time expressions
are themselves compile-time constants. Thus, they can be used as case labels and such.
« WEll recognized constants, such as0, 1, and - 1, can often be used directly. For example if af or loop iterates over an
array, then it is reasonable to code:

for (i = 0; i < size; i++) {
/'l statenments using array[i];
}

« Notethat <wf base. hh> defines the constants W Tr ue and W Fal se, aswell asthetype W Bool ean, as ensures
the constant NULL isavailable.

« Wherever possible, sizes should be expressed in terms of the si zeof operator. For example, if an array'ssizeis
determined by itsinitializers, the proper construct for determining the number of elementsit hasis:

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (13 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

doubl e factors[] = {
0. 1345,
123. 23451,
0.0
b
const int num factors = sizeof factors / sizeof factors[O0];

« Wherever possible, si zeof operations should be applied to objects, not types. Parentheses are not allowed around the
object specifier inasi zeof expression.

This meansthat if the type of an object changes, all the associated si zeof operationswill continue to be correct. The
parentheses are forbidden for data objects so that si zeof on types (where the compiler requires them) will be easy to see.

7.2 Use of const

Both ANSI C and C++ add a new modifier to declarations, const . This modifier declares that the specified object cannot be
changed. The compiler can then optimize code, and aso warn you if you do something that doesn't match the declaration.

Thefirst example is amodifiable pointer to constant integers: f 00 can be changed, but what it points to cannot be. Use this
form for function parameter lists when you accept a pointer to something that you do not intend to change (for example,
strlen(const char *string))

const int *foo;

foo = &sone_constant i nteger_vari abl e

Next isaconstant pointer to a modifiable integer: the pointer cannot be changed (once initialized), but the integer it pointsto
can be changed at will:

int *const foo = &sone_i nteger _vari abl e;

Finally, we have a constant pointer to a constant integer. Neither the pointer nor the integer it points to can be changed:

const int *const foo = &sone_const _integer_vari abl e;

Note that const objects can be assigned to non-const objects (thereby making a copy), and the modifiable copy can of
course be changed. However, pointersto const objects cannot be assigned to pointersto non-const objects, although the
converseis allowed. Both of these forms of assignments are legal:

(const int *) = (int *);

(int *) = (int *const);

But both of these forms are illegal:

(int *) = (const int *); /1 illegal

(int *const) = (int *); /1 illegal

When const isused in an argument list, it means that the argument will not be modified. Thisis especially useful when you
want to pass an argument by reference, but you don't want the argument to be modified.

voi d
bl ock_nove(const void *source, void *destination, size_t |ength);

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (14 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

Here we are explicitly stating that the source data will not be modified, but that the destination data will be modified. (Of
coursg, if the length is O, then the destination won't actually be modified.)

All of theserules apply to cl ass objects aswell:

cl ass Foo

{
public:
voi d bar1() const;
voi d bar2();

Hs

const Foo *foo_pointer;
foo_pointer->bar1(); /'l 1egqal

foo_poi nter->bar2(); /1 111egal

Insideaconst member function likebar 1() , thet hi s pointer istype(const Foo *const), soyourealy can't
change the object.

However, there is adistinction between bit-wise const and logical const. A bit-wise const function truly does not modify any
bits of datain the object. Thisiswhat the compiler enforcesfor aconst member function. A logical const function modifies
the bits, but not the externally visible state; for example, it may cache avalue. To users of aclass, it islogical, not bit-wise,
const isimportant. However, the compiler cannot know if amodification islogically const or not.

Y ou get around this by casting away const, for example, by casting the pointer to be a(Foo *). Thisshould only be done if
you are absolutely sure that the function remains logically const after your operation, and must always be accompanied by an
explanatory comment.

7.3 struct and uni on Declarations

A st ruct should only be used for grouping data; there should be no member functions. If you want member functions, you
should beusing acl ass. Hence, st r uct sshould be pretty rare.

« The opening brace should be on the samelineasthe st r uct or uni on name.

« Theclosing brace should be on a separate line followed by a semicolon, lining up with the start of thest r uct or
uni on keyword.

e Declarationsinastruct or uni on should be indented one levdl.

struct Foo {
i nt si ze; /! Measured in inches
char *nane; /! Label on icon

¥
Notethat st r uct and enumtag names are valid typesin C++, so the following common C idiomis obsoleted because f 00
can be used wherever you used to use Foo:

t ypedef struct foo { /* Cbsolete Cidiom*/

} Foo;
7.4 enum Declarations

« Theenumtag and the opening brace should be on the same line as the enumkeyword.

« Thelayout for an enumisthe sameasfor ast r uct if it takes up multiple lines, or it contains explicit initializers. It
also can be contained on one line as shown below.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (15 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

o Thelast itemin an enum's element list should not be followed by acomma (’, ').

« Where possible, the type declaration should occur within the scope of a classinstead of polluting the global-scope
namespace. (See Namespace Clashes on page 8.) When doing this, references to the constants outside of the class's

member functions must be qualified:

cl ass Col or

{
public:
enum Conponent {
Red, Green, Blue
1
¥

Col or: : Conponent foo = Col or:: Red,
« If your constants define arelated set, make them an enumerated type.

const int Red = 0; /! Bad Form

const int Bl ue = 1;

const ink G een = 2;

enum Col or Conponent { /1 Much Better
Red,
Bl ue,
G een

H

enum Col or Conponent { /1 Explicit values can be given
Red = 0x10, /] to each itemas well...
Bl ue = 0x20,
G een = 0x40

H

This causes Col or Conponent to become a distinct type that is type-checked by the compiler. Values of type
Col or Conponent will be automatically converted toi nt asneeded, but ani nt cannot be changed to a
Col or Conponent without a cast.
« Some compilers can generate a useful warning when confronted with aswi t ch statement on an enumvariable that
does not have all elements of the enum expressed as case labels. This situation usually indicates alogic error in the
code.

« If you need a constant for the number of elementsin an enum make the last element of theenumbe al ast field.

enum Col or {
Red,
Bl ue,
G een,
Last Col or = green

¥
Thistrick should only be used when you need the number of elements, and will only work if none of the enumeration literals
are explicitly assigned values.

7.5 Classes

« Only functions should be publ i ¢ or pr ot ect ed. Member data must alwaysbepri vat e.
« All inheritance must be publ i c. pri vat e and pr ot ect ed inheritance is not allowed.

« Itisvery important to make sure that your class acts like a black box. The interface you export to clients and subclasses
should reflect precisely what they need to know and nothing more. Y ou should ask yourself, for every member function

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (16 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

you export (remember, you're not exporting any publ i ¢ or pr ot ect ed data members, right?), "Does my client (or
subclass) really need to know this, or could | recast the interface to reveal 1ess?’

« Member functions should be declared const whenever possible (see Use of const on page 14).

7.6 cl ass Declarations

« Theopening bracefor acl ass should be on a separate line in the same column asthecl ass keyword.

Thisisto help users of vi , which has a simple "go to beginning of paragraph” command, and which recognizes such a line as
a paragraph beginning. Thus, you can, in the middle of a long class declaration, go to the beginning of the class with a simple
command. The usefulness of this feature was deemed to outweigh its inconsistency (also see. section 9.2).

« Theclosing brace should be on a separate line followed by a semicolon, lining up with the start of the cl ass keyword.
« Themembersof acl ass areindented similarly to those of ast r uct (see struct and union Declarations on page 15).

« Thepublic,protected,andpri vat e sectionsof acl ass should be present (if at al) in that order, indented 1/2
an indent level past that of the opening brace.

The ordering is"most public first" so people who only wish to use the class can stop reading when they reach
prot ect ed/pri vat e.

« Donot havepubl i c or pr ot ect ed datamembers--- use pri vat e datawith publ i ¢ or pr ot ect ed access
methods instead.

cl ass Foo: public Blah, private Bar

{
public:
Foo(); /'l be sure to use better
~Foo();
i nt get _size(int phase_of _noon) const; /1l comrents than
t hese.
i nt set _size(int new si ze);
virtual int override ne() = 0;
pr ot ect ed:
static int hi dden_get _si ze();
private:
i nt Si ze; /1 meani ngful coment
voi d utility_nmethod();
¥

Public and pr ot ect ed data members affect all derived classes and violate the basic object oriented philosophy of data
hiding.

7.7 Class Constructors and Destructors

Constructors and destructors are used for initializing and destroying objects and for converting an object of one type to another
type. There are lots of rules and exceptions to the use of constructors and destructors in C++, and programs that rely heavily on
constructors being called implicitly are hard to understand and maintain. Be careful when using this feature of C++!

Be particularly careful when writing constructors that accept only one argument (or use default arguments that may allow a
multi-argument constructor to be used asif it did) since such constructors specify a conversion from their argument type to the
type of its class. Such constructors need not be called explicitly and can lead to unintended implicit uses of conversions. There
are also other difficulties with constructors and destructors being called implicitly by the compiler when initializing references
and when copying objects.

Things to do to avoid problems with constructors and destructors:

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (17 of 40) [10/1/2000 6:52:23 PM]

Wildfire C++ Programming Style

« When passing objects as parameters to functions you will want to consider passing them by pointer or by reference. If
you pass an object by value, a constructor will be called to initialize the formal parameter, which may not be what you
want. Similarly, when returning from a function you may wish to return a pointer to the object instead of the object
itself. Just be aware of memory "leaks" and object "hygiene" when doing this. (For an in depth exploration of this area,
see Items 22 and 23 in Effective C++ [12].)

« Be careful when copying objects --- unless you redefine the assignment oper at or =, the compiler will perform a
member-wise copy, which may not be the behavior expected. Note that initialization and assignment are generaly very
different operations.

« If you want to make sure that for a given class no member-wise copying is alowed, define a private assignment operator
for the class.
Thiswill cause the compiler to generate a compile-time error if a
member-wise copy is attempted.

« Study thisarea carefully. Chapter 12 of the ARM [10] is the authoritative reference on the subject, and Effective C++
[12] tells you many useful things.

« The constructor and destructor declarations line up with the member function names.

cl ass Foo
{
publi c:
Foo();
~Foo();
I nt get _si ze(int phase_of _noon) const;
private:
¥

« Constructorsinvoked by your constructor must be one indentation level in from the constructor declaration. For
constructors declared on asingle line, the : ison the same line as the closing parenthesis. Constructors that take multiple
linesto declare have their : on the line following the last paramter, indented to the same level as the beginning of the
constructor name.

Bus St op: : BusSt op()
Peopl eQueue(30),
Port ("Defaul t")

{

}

BusSt op: : BusSt op(char *sone_ar gunent)
Peopl eQueue(30),
Port (some_ar gunent)

« Becareful about st at i c initialization. If you design a class that depends on some other facility in its constructor, be
careful about order dependenciesin st at i ¢ initialization. The order in which st at i ¢ constructors (that is, the
constructors of objectswith st at i ¢ storage class) get called is undefined. Y ou cannot count on one object being
initialized before another. Therefore, if you have such a dependency, you must either document that your class cannot be

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (18 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF23424
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325

Wildfire C++ Programming Style

used for st at i ¢ objects, or you must use "lazy evaluation™ to defer the dependency until later (see Item 47 in Effective
C++ [12] for more details).

7.8 Automatically-Provided Member Functions

C++ automatically provides the following methods for your classes (unless you provide your own):
« aconstructor,
 acopy constructor,
« anassignment operator,
« two address-of operators (const and non-const), and
« adestructor.

class Enpty { }; Il You wite this ...
cl ass Enpty /1l You really get this ...
{
publi c:
Empty() { } /'l constructor
~Empty() { } /'l destructor
Enpty(const Enpty &rhs); /| copy constructor
Enpty &operator=(const Enpty & hs); // assignnent operator
Enmpt y *operat or &) ; /1l address- of
const Enpty *operator&() const; /1 operators
b

Every class writer must consider whether the default functions are correct for that class. If they are, acomment must be
provided where the function would be declared so that a reader of the class knows that the issue was considered, not forgotten.

If aclass has no valid meaning for these functions, you should declare an implementation in the pr i vat e section of the class.
Such afunction should probably call abor t () , throw an exception, or otherwise generate a visible runtime error.

This ensures that the compiler will not use the default implementations, that it will not allow usersto invoke that function, and
that if a member function usesit by accident, it may at least be caught at runtime.

It isagood ideato always define a constructor, copy constructor, and a destructor for every class you write, even if they don't
do anything.

7.9 Function Overloading

Overloading function names must only be done if the functions do essentially the same thing. If they do not, they must not
share a name. Declarations of overloaded functions should be grouped together.

7.10 Operator Overloading

Deciding when to overload operators requires careful thought. Operator overloading does not simply create a short-hand for an
operation --- it creates a set of expectationsin the mind of the reader, and inherits precedence from the language.

« You should only use an operator shorthand if the logical meaning of applying the operator on the type(s) involved is
intuitive, either because of common usage (for example, + on strings concatenates, << adds to a stream) or real algebra
on the types (for example, a position class plus an offset gets a different position).

« If you overload one operator of alogically connected set, you must overload the rest of the set, if for no other reason
than to generate an error if the others are called when they are not meaningful. Overloading < without overloading > or
>= will astonish the user in unhappy ways, aswill overloading + and = but not += . In particular, - >. and[] should
always be considered a set:

f 0oo- >nmenber () /'l should be identical to

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (19 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325

Wildfire C++ Programming Style

(*foo). menber () /'l which should also be identical to
foo[0] . menber ()

Overloading == requires overloading ! =, and vice versa.

If theexpression(a ! = b) isnotequivalentto! (a == b) we have unacceptably astonished the user.
« Note that while you can overload operators, you cannot change the language's precedence rules.

« If an operator in a set does not make sense, you must overrideit inthe pri vat e section so that the compiler will report
the error to anyone who assumes that the set is complete. However, this should be aflag for you to consider whether the
operator overloading really is natural --- the strong presumption is that you are not going to override all membersin the
set then none of the members of the set should be overridden.

« Usetype-cast operators selectively. Like so many C++ features, type casting can either clarify or obscure your code. If a
type cast seems "natural”, like the conversion between floating point and integers, then providing a cast function seems
like agood idea. If the conversion is unusual or nonsensical, then the existence of a cast function can make it very hard
to figure out what's going on. In the latter case, you should define a conversion function that must be called explicitly.

If you provide atype-cast operator, you must provide an equivalent conversion function as well.

This allows the user of the classto determineif a cast is more readable than a member function invocation, for example, to
avoid casts that look like they should be automatically done by the compiler, but are explicit to invoke the cast.

7.11 Protected items

When amember of aclassisdeclared pr ot ect ed, to clients of the classit isasif the member were private. Subclasses,
however, can access the member asif it were declared private to them. This means that a subclass can access the member, but
only as one of its own private fields. Specifically, it cannot access a protected field of its parent class via a pointer to the parent
class, only viaapointer to itself (or a descendant).

7.12 friends

When using friends remember that private member access rights do not extend to subclasses of thef ri end class. Any method
that dependson f r i end access to another class cannot be rewritten in a subclass.
« When applied to aclass (friend Classes, 8§ 7.12.1, cl ass Base, below), the friend keyword denotes a class-global
behavior change that is being applied to thef ri end class. Assuch, it is not governed by the class part designation
(publ i c, protected,orprivate) currently inforce. Thus, thef ri end keyword should be indented to the same
level asthese class part names.
« Inall other cases where the friend keyword isused, (seefri end i nt oper at or ==, section 7.12.2) it should be
treated as atype modifier in the same sensethat st ati ¢, ext ern,andvi rtual are Thatis, thewordfri endis
lined up along with the other type specifiers one indent level from the level of the classitself.

« Iffriend isneeded between classes, f ri end member functions are preferred to making the entire class afriend.

Theuseof f ri end class or method declarations is discouraged, sincethe use of f r i end breaks the separation between the
interface and the implementation. The only non-discouraged uses are for binary operators and for cooperating classes that need
private communication, such as container/iterator sets.

7.12.1fri end Classes

o Allfri end classdeclarations must come at the end of the class declaration.

« Ifafri end classdeclaration is necessary and thef r i end classisintended to be subclassable, thef r i end class must
be written so that its subclasses have the same access rights as the base class. To do this, any access depending on the
fri end declaration is encapsulated in a protected function:

cl ass Secr et

{

private:
I nt Dat a;

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (20 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

i nt nmet hod() ;
friend Base;
b
cl ass Base
{
pr ot ect ed:
i nt secret data(Secret *incone_info);
I nt secret _net hod(Secret *incone_info);
b
i nt
Base: : secret _data(Secret *incone_info)
{
return i ncone_info->Dat a;
}
i nt
Base: : seccet _net hod(Secret *i ncome_i nfo)
{
return i nconme_info->nethod();
}

Methods of the Secr et class should not be accessed directly by methods of thef ri end class Base. Direct access makesit
hard to cut-and-paste code from the base to a derived class:

voi d
Base: : an_exanpl e(Secret *incone_i nf o)
{
int a = income_info->Data; /1 BAD: Direct access is wong
int b = secret_data(incone_info); /1 GOOD:. Use accessor
functi ons!
}

7.12.2 friend Methods

Binary operators, except assignment operators, must aimost alwaysbef r i end member functions.

class String

{
publ i c:
String(const char *);
friend int operator==(const String & const String &;
friend int operator!=(const String & const String &
{ return !'(stringl == string2); }
¥
If the oper at or == were a member function, the conversion operator would only allow (St ri ng == char *) but not
(char * == String) Thiswould be quite surprising to the user of the class. Making oper at or == af r i end member

function allows the conversion implied by the constructor to work on both sides of the operator.

7.13 Templates

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (21 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

« Thetemplate specifier for atemplate class should be placed aone on the line preceding the "class" keyword or the return
type for afunction. The following header for the template definition should be indented 1/2 indent level:
Asan example:

t enpl at e<cl ass TYPE>

cl ass Li st
{
public:
TYPE front();
1
t enpl at e<cl ass TYPE>
TYPE
Li st<TYPE>: :front()
{
}

« The names of general template parameters should be simple and all-purpose, since their types are normally not known.
On the other hand, specific template parameters should be given meaningful names to show their purpose. For example:

t enpl at e<cl ass TYPE, unsigned int SIZE>
cl ass Vector

{

private:

Type Dat a[SI ZE] ;
}

Here, the type stored by the Vect or template classis named TYPE because it is a general purpose parameter. The SI ZE
parameter, however, is specific since it ultimately determines the size of aVect or <TYPE> object; its name reflects this
specific purpose.

8 Variables
8.1 Placement of Declarations

Since C++ gives the programmer the freedom to place a variable definition wherever a statement can appear, they should be
placed near their use. For efficiency, it may be desirable to invoke constructors only when necessary. Thus function code may
define some local variables, do some parameter checking, and once the sanity checks have passed then define the class
instances and invoke their constructors.

Where possible, you should initialize variables when they are defined.

char *Foo[] ={ "Hello", ", ", "World\n" };
i nt max_string_|l ength = BUFSI ZE;
String pat h("/usr/tnp/ gogin");

This minimizes "used before initialization” bugs.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (22 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style
8.2 ext er n Declarations

« Do not explicitly declare variables, types, or functions that you are not implementing. Include the appropriate public
header files instead.

« If youareusing aclass, but al you need is the type name (for pointers or references), you should use the smple forward
declaration instead of including the header file (if you can):

cl ass O assNane;

« External declarations should only be placed in header files and should begin in column 1. A comment describing the role
of theidentifier being declared should be included.

Place themin header files to prevent inconsistent declarations in each source file that usesiit.

8.3 Indentation of Variables

« The type names should be at the current indentation level.
« Type modifiers such as* and & should be with the identifier, not the type. The following style is forbidden:

int* i p;
String& str;

This style, though currently popular, lies about syntax, sincei nt * pl, p2; impliespl and p2 are both pointers, but oneis
not. Snce we do not accept that only one variable should be declared on a line as a fixed rule, we cannot allow a style that lies
about the meaning of multiple declarations on a line.

« Variable definitions should be indented to align the variables being declared, with identifiers lining up with each other
exclusive of preceding modifiers (*, &, etc.). (4)

i nt count = 0
char **pointer_to_string = &f 00;
8.4 Number of Variables per Line

« Onevariable per lineis recommended since it encourages commenting. In other words,

i nt | evel = 0; /1l indentation |evel
i nt si ze = 0; /'l size of synbol table
i nt i nes = 0; /1 lines read from i nput

ispreferred over:

i nt | evel , size, lines; /! Not Recommended

The latter style isfrequently used for declaring several temporary variables of primitive typessuch asi nt or char, or
strongly matched variables, such as x, y pairs, where changing the type of one requires changing the type of all.

o Variables and functions must not be declared on the sameline:

| ong db, OpenDb(); /| Bad
| ong db; /'l Better
| ong OpenDb() ; /1l but still not reconmmended

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (23 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style
#i ncl ude <adni nt ool s/ dat abase. hh> /] Best

Dat abae db;

You should use a header file that contains an external function declaration of QpenDb() instead of hard-coding its definition
in your sourcefile.

8.5 Definitions Hiding Other Definitions

« Avoid local variable definitions that override (hide) variables defined at higher levels.

voi d
W Function()
{
static int boggl e _count; /'l Count of boggles in fornyls
if (condition) {
i nt boggl e _count; /1l Bad --- this hides the above instance
}
}

8.6 Initialized Variables

« Opening braces on initializers must follow the = on the same line.
« If theinitializersfit on one ling, the closing brace should also be on that line.

« If theinitializersdon't fit comfortably on one line, they should be placed on separate lines, indented one level from the
variable name. In this case, the closing brace should be outdented one level from the initializer list.

This style is purposefully analogous to the function declaration style. It may look strange to some at first, but in the context of
a complete program, it lends itself to an overall pleasing appearance of the code.
« Initializer lists must always have the optional trailing comma.

Cat cats[] = {
" Shanus",
"Macka",
"Tigger",

" Xenephon",
H

« Initialized objects that require only oneinitializer should not use braces.

char *nane = "Franus";
9 Functions
9.1 Function Declarations

« Function declarations should be lined up in accordance with Indentation of Variables, § 8.3 above.

« Function parameters should be listed as many per line as reasonable. Indention for new lines should occur at the open (.

SonmeType *W Li braryFuncti onNane(voi d *current _pointer,
size_t desired_new size);

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (24 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style
However, if afunction takes only afew parameters, the declaration can be strung onto one line (if it fits):

i nt strcnp(const char *sl1, const char *s2);

We usually use a one-line-per-declaration form for several reasons.

(2) It is easy to comment the individual parameters,

(2) It makesit easier to read when there many parameters.

(3) It iseasy to reorder the parameters, or to add one. Theclosing) ; ison aline by itself to make it easier to add a new
parameter at the end of the parameter list.

(4) It isdesigned to be visually similar to the other declaration statements.

(5) It works well with long identifier names.

However, with simple declarations the weight seems too great for the benefit.

« If the function takes no parameters, both the opening and closing parenthesis must be on the same line.

i nt getchar();

The ANSI C-compatible construct of (voi d) for afunction with no parameters must only be used in header files designed to
be included by both C and C++ (See Interaction with C on page 39.)

« Function parameter names must be included in the function declaration, not just the parameter types. This applies as
well for usages where afunction prototype is being used as atype (in other words, at ypedef type). The only
exception is for operators and single-argument constructors where the meaning of the parameter is clear from that
context.

This providesinternal documentation that can help people remember what a parameter is supposed to represent. It also allows
commentsin the file to refer to the parameter by name.
« Input-only function parameters must either be passed by value or asaconst &.

« Vauesthat may be modified by afunction (input/output or output-only parameters) should be passed as references to
the thing that will be modified. (This closely resembles the Pascal var parameter) The alternative of passing pointersis
not encouraged, but is not prohibited. See References vs. Pointers, 8 11.5 for more details.

9.2 Function Definitions

« Function bodies should be small.

Small functions promote clarity and correctness.

« Each function definition should be preceded by a block comment that gives its name and a short description of what the
function does.

« Thefull type of the value returned should be alone on alinein column 1 (i nt must be specified explicitly). If the
function does not return avalue then it should be given the return type voi d. If the value returned requires along
explanation, it should be given in the block comment above. The function name should be alone on aline beginning in
column 1 (the class name isincluded on the same line as the function name if the function is a method of a class).

char *
W String::cstr()
{

}

/1

« Parameter declarations are analogous to those in Function Declarations, 8 9.1The opening brace of the function body
will be alone on aline beginning in column 1.

« Inthe case of afunction that has unused parameters, it may be useful to comment out the name of the unused parameter
in order to suppress compiler warnings. Except for callback routines, this usually is a questionable situation.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (25 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style
voi d
W Foo(int paraml, int /* optional _paran? */)
{

}

« All loca declarations and code within the function body are indented by one indentation level.

Il ...

i nt
Syst em nf ormati onCbj ect : : get _nunber _of users(Nane host _nane, Tine idle_tine)

{

i nt sone_vari abl e;

st at enent s;

« Never usethet hi s variable in member functions to access members. In other words, you should never write
t hi s- >Anyt hi ng.

10 Statements

« Each line must contain at most one statement. In particular, do not use the comma operator to group multiple statements
on one line, or to avoid using braces. For example:

argv++; argc--; /1 Multiple statenents are bad
if (err)
fprintf(stderr, "error\n"), exit(1); /1l Using ",' is worse
ar gv++; /1 The right way
argc--;
if (err) {

fprintf(stderr, "error\n");
exit(1);

}

10.1 Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces.

« Theenclosed list must be indented one more level than the compound statement itself. The opening left brace must be at
the end of the line beginning the compound statement and the closing right brace must be alone on aline, positioned
under the beginning of the compound statement (see example below).

« Theleft brace that begins afunction body, acl ass definition, or a new scope are the only occurrences of aleft brace
that should be alone on aline.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (26 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

/'l New Bl ock Scope

i nt some_vari abl e;

st at enent s;

» Braces are aways used around any multi-line statement when it is part of a control structure, suchasani f /el se or
f or statement, asin:

if (condition) { /'l braces required; followng "if" is two |ines
I f (other_condition) /'l braces not required -- only one line follows

stat enent;

}

Braces are not required for control structures with single-line bodies, except for do/whi | e loops, whose always require
enclosing braces. Thissingle-lineruleincludesafull i f /el se/el se/... statement:

if (condition)
single_thing();

else if (other_condition)
ot her _thing();

el se

final _thing();
Note that thisisa"single-linerule”, not a"single statement rule". It appliesto thingsthat fit on asingle line.

Sngle-statement bodies are too simple to be worth the weight of the extra curlies.
10.2i f/ else Statements

An el se clauseisjoined to any preceding close curly brace that is part of itsi f . See also Comparing against Zero on page
34.

if (condition) {

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (27 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

if (condition) {

} else {

if (condition) {
} else if (condition) {

} else {

}

10.3 for Statements

for (initialization; condition; update) {

}

If the three parts of the control structure of afor statement do not fit on one line, they each should be placed on separate lines
or broken out of the loop:

for (longinitialization;

| ongcondi ti on;

| ongupdat e

) |

}

longinitialization; /'l Alternate form..

for (; condition; update) {

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (28 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

When using the comma operator in the initialization or update clauses of af or statement, no more than two variables should
be updated. If there are more, it is better to use separate statements outside the f or loop (for the initialization clause), or at the
end of the loop (for the update clause).

10.4 do Statements

do {

} while (condition);

10.5 while Statements

while (condition) {

}

10.6 Infinite Loops

Theinfinite loop iswritten using af or loop:

for (;;) {

}
Thisformis better than the functionally equivalent whi | e (TRUE) or whi | e (1) sincethey imply a test against TRUE (or
1), which is neither necessary nor meaningful (if TRUE ever is not true, then we are all in real trouble).
10.7 Empty Loops

L oops that have no body must usethe cont i nue keyword to make it obvious that this was intentional.

while (*string_pointer++ I="\0")
conti nue;

10.8 switch Statements

« case labels should be on lines separate from the statements they control.

o case labelsareindented to 1/2 an indent level beyond the level of the swi t ch statement itself.
We use this indentation since the labels are conceptually part of the swi t ch, but indenting by a full indent would mean that
all code would be indented by two indent levels, which would be too much.

« A blank line must appear before thefirst case label in aset of case labels, especialy if the body code islarge. (But
don't put ablank line right after the swi t ch keyword)

« Thelast br eak intheswi t ch is, strictly speaking, redundant, but it is required nonethel ess.

This prevents a fall-through error if another case isadded after the last one.

« Ingenerd, the fall-through feature of the swi t ch statement should rarely, if ever, be used (except for multiple case
labels as shown in the example). If it is used otherwise, it must be commented with:

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (29 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

/| FALLTHROUGH
where the br eak would normally be expected.

This makes it clear to the reader that it is this fallthrough was intentional .
« A et ur n statement should not be followed by abr eak.

« SW t ch statements that use members of an enumshould not have adef aul t case. Thismeansthat if you have such a
swi t ch, you must always have all members of the enumrepresented in explicit case labels, even if these only
executeabr eak.

Some C++ compilerswill warn you if suchasw t ch ismissing a member. Thiswarning will call out situations where you
add a member to an enumdefinition but forget to add acase for itinagiven swi t ch. Thisisusually an error.

« sw t ch statements keyed on non-enumvalues should have adef aul t label if the code assumes that only certain
valueswill arrive. Such adef aul t label should make sure that the erroneous situation is called to someone's attention,
such as by signalling an error or generating an error message.

switch (pixel _color) {

case Col or:: bl ue:

br eak;

case Col or::red:
found red _one = TRUE;
/| FALLTHROUGH

case Col or:: purple:

{
i nt | ocal _vari abl e;
br eak;
}
defaul t: /'l handl es green, mauve, and pink colors..
br eak;

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (30 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

}

Thisisto catch unexpected inputs in more graceful ways than failing unpredictably somewhere else in the code.
10.9 got 0 Statements

While not completely avoidable, use of got o is discouraged. In many cases, breaking a procedure into smaller pieces, or using
adifferent language construct will enable elimination of agot o.

The main place where agot o can be usefully employed is to break out of several nested levelsof swi t ch, f or,orwhi | e
nesting when an error is detected. In future versions of C++ exceptions should be used.

for (...) {
for (...) {
if (disaster) {

goto error;

}

return true;

error: /'l clean up the ness
« Never useagot o to branch to alabel within ablock:

if (pool.is_empty()) {

goto | abel; /1 VERY WWRONG
}
for (...) {
bj ect obj;
| abel :
}

Branching into a block may bypass the constructor invocations and initializations for the automatic variables in the block.
Some compilerstreat thisas an error, others blissfully ignoreit.

« When agot o is necessary, the accompanying label must be alone on aline starting in column 1.
10.10 r et ur n Statements

The expressions associated with r et ur n statements are not required to be enclosed in parentheses.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (31 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

10.11 try/cat ch Statements

The proposed C++ syntax for exception handling is not to be used in shared code at this time (5). This section specifies the
syntax which will eventually be used to support the feature, but should be avoided in near term code.

We need a section describing an alternate way of handling exceptions so that we can use " boilerplate” code to do the right
thing now and help ease the transition to exceptionsin the future.

« Theexpressions associated with t hr ow statements are not required to be enclosed in parentheses.

« Signaling an exception in adestructor is not agood idea, since any destructive behavior that has already taken place
probably cannot be reversed.

try {
st at enent s;

} catch (type) {
st at enent s;

} catch (...) { /[l This is the literal "..."
statenent s;

}
11 Miscellaneous
11.1 General Comments & Rules

« When incrementally modifying existing code, follow the style of the code you are modifying, not your favorite style.
Nothing is harder to read than code where the personal style changes from lineto line.

« Don't use global data. Consider using file- or class-static data members instead.

« File static variables are more appropriate than class-static variables, since they hide more of the class's implementation
from the reader of the header file. Of course, if you class implementation does not fit within one file, this technique will
not be usable.

« Inlibrary code, don't use global or static objects that require constructors.
This can used to support C programs being linked to C++ libraries without the use of a C++-aware linker. See Interaction
with C on page 39.

« Don't use global (nonmember) functions when implementing classes --- use private member functions instead (except
binary operators --- see friend Methods, § 7.12.2.)

« It'spossibleto partially circumvent the strong type checking C++ imposes on function arguments by using unspecified
(or <st dar gs. h>) parameters. Y ou should avoid doing thisif at all possible. The classic example of thisusageis:

void printf(const char *, ...);

« Donot use a"typefield" in aclass when avirtual function can do the job. However, if you need to be able to narrow the
type of a superclassto its subclass then atype field is appropriate.

« Inexpressionsinvolving mixed operators, use parentheses to ensure desired results and to enhance clarity. Overuse of
parentheses tends to result in code that is difficult to read --- too few parentheses can result in expressions that are hard
to modify correctly.

« Try to make the structure of your program match the intent. For example, replace:

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (32 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style
i f (Bool eanExpr essi on)

return WTrue;
el se

return W Fal se;
with:

return Bool eanExpr essi on;
Similarly,

if (condition) /1 Anwkward

return Xx;

return vy;
isusually clearer when written as.

if (condition) /'l O ear
return x;
el se

return vy;
or

return (condition ? x : vy);

« Do not use the assignment operator in a place where it could be easily confused with the equality operator. For instance,
in the simple expression

if (x =vy) { /'l Confusing

}

it is hard to tell whether the programmer really meant assignment or the equality test.
Instead, use

if ((x =y) '=0) { /'l Under st andabl e
}

or something similar if the assignment is needed within thei f statement. Thereis atime and a place for embedded
assignments. The ++ and - - operators count as assignments. So, for many purposes, do functions with side effects.

« Do not use embedded assignments in an attempt to improve run-time performance --- thisis the job of the compiler.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (33 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

Note aso that side effects within expressions can result in code whose semantics are compiler-dependent, since the
order of evaluation is explicitly undefined in most places. Compilers do differ.

As an aside, many of today's compilers can produce faster and/or smaller code if you don't use embedded assignments. If you
are using such convoluted code to "help the compiler optimize the program’, you may be doing more harm than good.

« Become familiar with existing library classes. Y ou should not be writing your own string compare routine, or defining
your own mrencpy () function. Not only does this waste your time, but it may prevent your program from taking
advantage of any hardware specific assists or other means of improving performance of these routines. It also makes
your code less readable, because the reader has to figure out whether you are doing something specia in the
re-implemented routines to justify their existence.

11.2 Limits on numeric precision

o C++isasuperset of ANSI-C in most respects; specifically it sharesthe ANSI specs on the C's built in types. Thisisall
you can safely assume:

Type M ni mum Maxi mum Coment s
Val ue Val ue
si gned char --128 127 They may hold nore
unsi gned char 0 255 They nmay hol d nore
char 0 127 Can't assune signed or
unsi gned
short --32,768 32,767 M ninmum 16 bits
si gned short
unsi gned short O 65, 535 M ni num 16 bits
| ong --2,147,483,648 2,147,483,64 Mninmum 32 bits
si gned | ong 7
unsi gned | ong 0 4,294,967,29 Mninum 32 bits
5
i nt --32,768 32,767 Sanme as a short
signed int
unsi gned i nt 0 65, 535 Sane as an unsi gned short

« A char may beunsi gned or si gned. You can't assume either. Thus, only use (unmodified) char if you don't care
about sign extension and can live with valuesin the range of 0-127.

« Ani nt cannot be counted on to hold morethanashort i nt.Itisanappropriatetypeto useif ashort would be
big enough but you would like to use the processor's "natural” word size to improve efficiency (on some machines, a
32-bit operation is more efficient than a 16-bit operation because there is no need to do masking). If you need something
larger thanashor t , you must specify al ong --- ani nt won't do.

« Always use the right system-defined types for values: know and usesi ze_t,ptrdiff _t,si gatom c_t where
appropriate.

11.3 Comparing against Zero

Comparisons against zero values must be driven by the type of the expression. This section shows the valid ways to compare
for given types. Anything not permitted here is forbidden.

When maintaining code it is very useful to be able to tell what "units’" a comparison is using. As an example, an equality test
against the constant O implies that the variable being tested is an integral type; testing against an explicit NULL implies a
pointer comparison, while an implied NULL implies a boolean relationship.

(See if/else Statements on page 28)

11.3.1 Boolean

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (34 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style
Choose variable names that make sense when used as a "condition". For example,

if (pool.is_enmpty())
makes sense, while

if (pool.state())

just confuses people. The generic form for Boolean comparisons are

i f (bool ean_vari abl e)

if (!bool ean_vari abl e)

Note that thisisthe only case where an implicit test is allowed; al other comparisons (i nt , char , pointers, etc.) must
explicitly compare against a value of their type. A standalone variable should always imply a boolean value.

Never use the boolean negation operator! with non-boolean expressions. In particular, never useit to test for anull pointer or
to test for success of thest r cnp() function:

if (!strcnp(sl, s2)) /1 Bad

if (strcnp(sl, s2) == 0) /'l Good

11.3.2 Character

if (char_variable '="\0")
while (*char_pointer I'="\0")
11.3.3 Integral

if (integer_variable == 0)

if (integer_variable !'= 0)

11.3.4 Floating Point

if (floating_point_variable > 0.0)

Always exercise care when comparing floating point values. It is generally not a good idea to use equality or inequality type
comparisons. Use relative comparisons, possibly bounded by a"fuzz" factor in cases where an equality-like functionality is
required.

11.3.5 Pointer

if (pointer_variable !'= NULL) /1 Always use an explicit test vs.
NUL L

Implicit comparisons are not alowed:

i f (pointer_variable) /1 WWRONG

11.4 Use and Misuse of i nl i ne

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (35 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

« inline functions should not be used indiscriminately.
« Neverusei nl i ne functionsin public interface definitions.

Snce a client using your inlined interface actually compiles your code into their executable, you can never change this part of
your implementation. And no one else can provide an alternate implementation.

« Some C++ compilers support a +w option which will warn you of the case where things declared i nl i ne aren't inlined.
When ani nl i ne function isn'tinlined, it may be defined "file static" in every file that referencesit!

Within your implementation there may be places where you need to use inlines. Be aware that the use of inlines can easily
make your (and other people's) code larger, which can overcome any efficiency gains. Here are some guidelines to help do it
right.

« Asexplained in Chapter 7 of the ARM, inlining is not a panacea and in general should be done after the programis
written, debugged and instrumented.

« Small smple functions that only increment or return a value are usually good candidates for inlining. For most
functions, the time spent in acall is dominated by the time it takes to execute the body of the function and not by the
cost of calling it. Indiscriminate use of inlining resultsin larger programs that can take longer to execute dueto alarger
working set that needs to reside in memory. Unless you know for sure that inlining a particular function is awin, do not
use inlining.

« If your inline function just calls something else that isn't inline, that's fine, as long as the other function has identical
semantics. As an example, you might have a class that defines avirtual functioni s_equal () , which compares two
objects for equality. It also has an inline definition for oper at or ==, asanotational convenience. Since oper at or ==
just turns around and callsthei s_equal () function, it may be OK for it to be inline and not virtual.

« Do not useinlines just because your function just happens to have a one-line implementation.
« Useaninlinefunction if efficiency isvery, very important and you'll never changeit.

« If you don't know (and can't prove) that your implementation must be inline, don't make it inline. Build it normally and
then measure the performance. Experience has shown again and again that programmers spend |ots of time optimizing
code that hardly ever gets executed, while totally missing the real bottlenecks. The empirical approach is much more
reliable. Experience has also shown that a better algorithm or smarter data structures will buy you alot more
performance than code tweaking.

« Longinline functions should be declared smply asi nl i ne in the class, with the code presented immediately after the
class declaration:

cl ass Dummy
{
publ i c:
inline int do_sonet hi ng();
}s
inline int
Dumy: : do_sonet hi ng()
{
[l ... several |lines of code
}

11.5 References vs. Pointers

The advantages of using references over pointers include (from [25]):

« A reference can only refer to an object. Its just another name for an existing object. Therefore, people reading the code
should be able to recognize immediately the intent of the programmer --- namely to refer locally to some object viathis
one local name.

« Insome situations using multiple inheritance, areference may be somewhat more efficient.
« A referenceisaways"const”, in the sense that the reference cannot be re-assigned to refer to another object within the

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (36 of 40) [10/1/2000 6:52:24 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF65323

Wildfire C++ Programming Style

scope of the lifetime of that reference. Thus both the original programmer and the subsequent code reader can assume a
powerful invariance across the scope: this reference refers to some object, and it only refersto that object.

The advantages of using pointers over references include:

Pointers can do and mean many things that references can't --- a pointer can be used to represent such things as:
an array

an element of an array

null (no object passed)

one past the end of an array (an end marker)

So clearly if you must do one of these things you should be using a pointer. The disadvantage then being that which of N
possible uses of the pointer isintended is not immediately apparent from the code.

Pointers (non-constant) can be re-assigned, making them useful in the infrequent case where it would truly be inefficient
or inconvenient to not be able to change the pointers value. The disadvantage then is that the code reader cannot assume
invariance within the scope.

Use references where you reasonably can --- that is, when assigning a name to an already existing singular object. Use pointers
for any of the other N meanings that pointers have traditionally held.

11.6 Portability

The advantages of portable code are well known and little appreciated. This section gives some guidelines for writing portable
code, where the definition of portableis asource file that can be compiled and executed on different machines with the only
source change being the inclusion of (possibly different) header files.

Beware of making assumptions about the size of pointers. They are not alwaysthe same sizeasi nt . Nor are al
pointers always the same size, or freely interchangeable.

Also, beware of potential pointer alignment problems. On machines that have address alignment restrictions (for
example, Sparc), the conversion of a pointer-to-char to apointer-to-i nt may result in an invalid address.

Never assume you can do anything with a NULL pointer except test its value. In particular, code that assumes that
dereferencing aNULL pointer yields' \ 0" (alaVAX/BSD) will generate memory faults on other machines (for
example, Sparc). Further, never write a class that assumesthat t hi s may be validly NULL.

Don't assume that longs, floats, doubles, or long doubles can be at any even address.

Don't assume you know the memory layout of a data type.

Don't assume you know how ast r uct or cl ass islaid out in memory, or that it can be written to adatafile asis.
Never assume that the rest of the world uses 7-bit US-ASCII.

Watch out for signed characters. On some machines, for example, char is sign-extended when used in expressions,
which is not the case on some other machines. Code that assumes either that char issi gned or unsi gned is
non-portable. It is best to completely avoid using char to hold numbers. Manipulation of characters asif they were
numbers is often non-portable. Explicitly declare character variablesas si gned or unsi gned in cases where it
matters.

Bitfieldsare also si gned on some machines and unsi gned on others. If you use bitfieldsin away that is sensitive to
this difference you must be explicit.

On some processors the bits (or bytes) are numbered from right to left within aword. Other machines number the bits
from left to right. Hence any code that depends on the left-right orientation of bitsin aword deserves specia scrutiny.
Bit fields within structure members will only be portable so long as two separate fields are never concatenated and
treated as a unit.

Alignment considerations and loader peculiarities make it very rash to assume that two consecutively declared variables
aretogether in memory, or that a variable of one typeis aligned appropriately to be used as another type.

Y ou should not need to know the format of the virtual tables generated by the compiler. These formats may not even be
portable between different versions of the same compiler.

If asimpleinteger, such as aloop counter, is being used where either 16 or 32 bitswill do, then usei nt , sinceit will
get the most efficient (natural) unit for the current machine. Word size also affects shifts and masks. The statement

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (37 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

X &= 0177770

will clear only the three right most bitsof a16 biti nt onaPDP-11. OnaVAX (with 32 biti nt s) it will also clear the entire
upper 16 bits. Use

X &= ~07
instead, which works as expected on all machines. The operator | does not have these problems, nor do bit-fields.

« Thedirective#i ncl ude "sonefil e. hh" impliesdifferent search paths on different systems. On BSD derived
systems it means

1. first look in the directory the build is being donein,

2. thenusethe- | directory list
while on System V derived systems it means

3. first look in the directory the current fileisin,

then the directory the build is being done in,

5. thenthe- | directory list
Note that the BSD systems don't implicitly look in the directory that contains the sourcefile if that directory isn't the one
where the build is being done.

As an example, assume adirectory with thefilesf 0o. cc, f 00. hh, and the subdirectory obj . Also assume that
f 00. cc doesan#i ncl ude "foo. hh". Thecommand

>

CC -c -0 obj/foo.0 foo.cc
will work on both systems, but

cd obj

CC -¢c -0 foo.o ../foo.cc
will fail to find f co. hh on many BSD based systems.

« Some things are inherently non-portable. Examples include code to deal with particular hardware registers such as the
program status word, and code that is designed to support a particular piece of hardware such as adevice driver. Evenin
these cases there are many routines and data structures that can be made machine-independent. Source files should be
organized so that the machine-independent code and the machine-dependent code are in separate files. Then if the
program isto be moved to a new machine, it isamuch easier task to determine what needs to be changed.

12 Interaction with C
12.1 ANSI-C/C++ include files:

Thisisthelist of the header files that ANSI-C (and thus C++) requires be provided by the language implementation. Use of
any other "system" header file may not be portable.

Uses of these C header files are not required to be bracketed withtheextern "C' { } construct.

#i ncl ude <stddef. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>
#i ncl ude <stdlib. h>
#i ncl ude <l ocal e. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#i ncl ude <ti ne. h>

#include <limts. h>

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (38 of 40) [10/1/2000 6:52:24 PM]

Wildfire C++ Programming Style

#i ncl ude <errno. h>
#i ncl ude <assert. h>
#i ncl ude <signal . h>
#i ncl ude <setj np. h>
#i ncl ude <math. h>

#i ncl ude <fl oat. h>

12.2 Including C++ Header Files in C programs

Header files that must be included by both C and C++ source have dlightly different rules than do C++-only header files.
o Thefilesarenamed headerfil e. h instead of C++'sheaderfi |l e. hh

« All C++ keywords nust be avoi ded. The C++ keywords that are not in C are: asm,
catch,cl ass,del ete,friend,inline,new, operator,private,protected,public,tenplate,
this,throwtry,virtual.

o CommentsmustuseC's/* */ notC++'s//.
« Functions that take no parameters must use (voi d) , not just () .
« Function prototypes nust always be provided.

This project has no interest in any non-ANSI-C dial ects of the C | anguage.

« The C | anguage mapping for identifiers nust be preserved (See Tenplate for
Shared C and C++ Header Files on page 44).

12.3 Including C Header Files in C++

The inclusion of every non-C++ header file nust be surrounded by the exteen"C"{}
construct.

Note that the header files enumerated above (ANSI-C/C++ includefiles:, § 12.1) are considered C++ header files, and not
subject to thisrule.

extern "C' {
#i ncl ude <sonefil e. h>
#i ncl ude <otherfile. h>

}

12.4 C Code calling C++ Libraries

Function calls that are intended to be called from C that take input-only st r uct arguments may wish to use pointers, since C
does not have references. Such pointers must, of course, be declared const .

In order to be able to export a C++ library to C users, you'd like to let the C users link to the library using the regular C/Unix
linker.

The CC linker (also called the "C++ pre-linker" or "patch” or "munch") is the part of the C++ system that makes static
constructors and static destructors work. These are the routines that get called if you have aglobal (or alocal static) variable
whose class has a constructor. The C++ pre-linker paws through your object files looking for the right pattern of mangled
name that indicates constructors and/or destructors that need to be called for that file, puts them all together into an
initialization routine named _mai n(), and linksthat synthesized _nai n() into your program. Cfront has inserted acall to
_mai n() atthestart of your main C++ program.

So, on SUNOS 4.x, if your library has any global, file-static or local-static variables whose classes have constructors or
destructors, you must use the CC command to link any application to that library.

SunOS 5.0 object files allow librariesto have a. i ni t section that gets called to initialize the library. The constructors would
be put into this section (and not _mmai n()), thus avoiding the linking problems mentioned above.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (39 of 40) [10/1/2000 6:52:24 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF16551
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF16551

Wildfire C++ Programming Style
Footnotes

D

(2)

3)

(4)

()

Thereal, legal copyright text is still being created. It will be much longer and wordier than that which is shown here. A
tool exists that allows us to simply put a comment containing the word "Copyright" somewherein it at the beginning of
the file and have the correct current copyright notice inserted automatically at alater date.

Hungarian notation isthat style that has aidentifier modifier (either suffix or prefix) for every potentially interesting fact
about that identifier, for example, a"P" suffix for pointer, "I" prefix for local, "i* prefix for anint, "a" suffix for arrays,
so each identifier can look something like liindexaP.

This does not apply to names used in libraries or generated by utilities.
Lining up theinitializations, as shown in the examples, is a matter of personal preference.

As soon as exceptions are available in the compilers we use, this restriction will be revisited.

Chris"at" lott.com archived this page.

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (40 of 40) [10/1/2000 6:52:24 PM]

	umd.edu
	Wildfire C++ Programming Style

