
Wildfire C++ Programming Style

With Rationale

by Keith Gabryelski

Wildfire Communications, Inc.
Wildfire: 617-674-1724

Fax: 617-674-1501
Email: ag@wildfire.com

Copyright © 1997 by Keith Gabryelski

This mirror was established with the express permission of the author.
Here is the original home page for this document.

1 Introduction

1.1 Background

2 Fundamental MetaRule

2.1 C++ is different from C

3 Files

3.1 File Naming Conventions
3.2 File Organization
3.3 Header File Content
3.4 Source File Content

4 Preprocessor

4.1 Macros (#define)
4.2 Conditional Compilation (#if and its ilk)

5 Identifier Naming Conventions

5.1 General Rules
5.2 Identifier Style
5.3 Namespace Clashes
5.4 Reserved Namespaces

6 Using White Space

6.1 Indentation
6.2 Long Lines
6.3 Comments
6.4 Block Comments
6.5 Single-Line Comments
6.6 Trailing Comments

7 Types

7.1 Constants
7.2 Use of const
7.3 struct and union Declarations
7.4 enum Declarations
7.5 Classes

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (1 of 40) [10/1/2000 6:52:23 PM]

http://www.wildfire.com/~ag/Engineering/Development/C++Style/

7.6 class Declarations
7.7 Class Constructors and Destructors
7.8 Automatically-Provided Member Functions
7.9 Function Overloading
7.10 Operator Overloading
7.11 Protected items
7.12 friends

7.12.1 friend Classes
7.12.2 friend Methods

7.13 Templates

8 Variables

8.1 Placement of Declarations
8.2 extern Declarations
8.3 Indentation of Variables
8.4 Number of Variables per Line
8.5 Definitions Hiding Other Definitions
8.6 Initialized Variables

9 Functions

9.1 Function Declarations
9.2 Function Definitions

10 Statements

10.1 Compound Statements
10.2 if/else Statements
10.3 for Statements
10.4 do Statements
10.5 while Statements
10.6 Infinite Loops
10.7 Empty Loops
10.8 switch Statements
10.9 goto Statements
10.10 return Statements
10.11 try/catch Statements

11 Miscellaneous

11.1 General Comments & Rules
11.2 Limits on numeric precision
11.3 Comparing against Zero

11.3.1 Boolean
11.3.2 Character
11.3.3 Integral
11.3.4 Floating Point
11.3.5 Pointer

11.4 Use and Misuse of inline
11.5 References vs. Pointers
11.6 Portability

12 Interaction with C

12.1 ANSI-C/C++ include files:

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (2 of 40) [10/1/2000 6:52:23 PM]

12.2 Including C++ Header Files in C programs
12.3 Including C Header Files in C++
12.4 C Code calling C++ Libraries

1 Introduction

1.1 Background

This document defines the C++ coding style for Wildfire, Inc. It also tries to provide guidelines on how to use the various
features found in the C++ language. The establishment of a common style will facilitate understanding and maintaining code
developed by more than one programmer as well as making it easier for several people to cooperate in the development of the
same program. In addition, following a common programming style will enable the construction of tools that incorporate
knowledge of these standards to help in the programming task.

Using a consistent coding style throughout a particular module, package, or project is important because it allows people other
than the author to easily understand and (hopefully) maintain the code. Most programming styles are somewhat arbitrary, and
this one is no exception. In the places where there were choices to be made, we attempted to include the rationale for our
decisions.

This document contains rationale for many of the choices made. Rationale will be presented with this paragraph style.

One more thing to keep in mind is that when modifying an existing source file, the modifications should be coded in the same
style as the file being modified. A consistent style is important, even if it isn't the one you usually use.

However, there are many variations in style that do not interfere with achieving these goals. This style guide is intended to be
the minimum reasonable set of rules that accomplish these ends. It does not attempt to answer all questions about where ever
character should go. We rely upon the good judgement of the programmer as much as possible.

This guide presents things in "programming order", that is, notes, rules, and guidelines about a particular programming
construct are grouped together. In addition, the sections are in an order that approximates that used to write programs.

The section Miscellaneous on page 32 contains many useful tidbits of information that didn't fit well into any of the other
sections.

Finally, there is a Bibliography and Reading List at the end of this document that contains quite a few titles. Many of the books
there should be considered mandatory reading --- if nothing else, buy and read a copy of both the ARM [10] by Ellis &
Stroustrup and Effective C++ [12] by Scott Meyers. Coplien's Advanced C++ Programming Styles and Idioms [13] is also
highly recommended.

2 Fundamental MetaRule

A good style guide can enhance the quality of the code that we write. This style guide tries to present a standard set of methods
for achieving that end.

It is, however, the end itself that is important. Deviations from this standard style are acceptable if they enhance readability and
code maintainability. Major deviations require a explanatory comment at each point of departure so that later readers will
know that you didn't make a mistake, but purposefully are doing a local variation for a good cause.

A good rule of thumb is that 10% of the cost of a project goes into writing code, while more than 50% is spent on maintaining
it. Think about the trade-offs between ease-of-programming now vs. ease-of-maintenance for the next 5 to 10 years when you
consider the rules presented here.

2.1 C++ is different from C

The C++ programming language differs substantially from the C programming language. In terms of usage, C is more like
Pascal than it is like C++. This style guide differs from traditional C style guides in places where the "C mindset" is
detrimental to the object-oriented outlook desired for C++ development.

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (3 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF23424
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF79763

3 Files

Code should compile without errors or warnings. "Compile" in this sense applies to lint-like code analyzers, a
standard-validating compilers (ANSI-C++, POSIX, Style Guide Verification, etc.), and C++ compilers on all supported
hardware/software platforms.

3.1 File Naming Conventions

Try to pick filenames that are meaningful and understandable. File names are not limited to 14 characters. The following table
shows the file naming conventions we will use:

File Contents Name

C++ Source Code filename.cc
C++ Header File filename.hh
C Source Code filename.c
C Header File filename.h
Object Code filename.o
Archive Libraries filename.a
Dynamic Shared Libraries filename.so.<ver>
Shell Scripts filename.sh
Yacc/C Source Code filename.y
Yacc/C++ Source Code filename.yy
Lex/C Source Code filename.l
Lex/C++ Source Code filename.ll
Directory Contents README
Build rules for make Makefile

POSIX specifies a maximum of 14 characters for filenames, but in practice this limit is too restrictive: source control systems
like RCS and SCCS use 2 characters; the IDL compiler generates names with suffixes appended, etc.

3.2 File Organization

Although there is no maximum length requirement for source files, files with more than about 1000 lines are
cumbersome to deal with.

●

Lines longer than 80 columns should be avoided. Use C++'s string concatenation to avoid unwieldy string literals and
break long statements onto multiple lines. (See Long Lines on page 10):

●

char *s1 = "hello\n"
 "world\n"; // s1 is exactly the same as s2,
char *s2 = "hello\nworld\n";

The line length limit is related to the fact that many printers and terminals are limited to an 80 character line length. Source
code that has longer lines will cause either line wrapping or truncation on these devices. Both of these behaviors result in code
that is hard to read.

No #pragma directive should be used.●

#pragma directives are, by definition, non-standard, and can cause unexpected behavior when compiled on other systems.
On another system, a #pragma might even have the opposite meaning of the intended one.

In some cases #pragma is a necessary evil. Some compilers use #pragma directives to control template instantiations. In
these rare cases the #pragma usage should be documented and, if possible, #ifdef directives should be to ensure other
copilers don't trip over the usage. (See #error directive and 4.2 Conditional Compilation (#if and its ilk)

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (4 of 40) [10/1/2000 6:52:23 PM]

3.3 Header File Content

Header files should be functionally organized, with declarations of separate subsystems placed in separate header files. For
class definitions, header files should be treated as interface definition files.

Declare related class and types that are likely to be used together in a single header file.●

If a set of declarations is likely to change when code is ported from one machine to another, put them into a separate
header file.

●

Never declare static variables or non-member static function prototypes in a header file.●

Never define variables in a header file.●

Private header files which are used only by a specific implementation should live with that implementation's source code
(for example, in the same directory), and be included using the #include "name" construct.

●

Header files that are designed to be includable by both C and C++ code have different rules. See Interaction with C, §
12.

●

The required ordering in header files is as follows:

A "stand-alone" copyright notice such as that shown below (1):1.

 // Copyright 1992 by Wildfire Communications, Inc.
 // remainder of Wildfire copyright notice

Don't place anything other than the copyright text in this comment --- the whole comment will be replaced programmatically to
update the copyright text.

An #ifndef that checks whether the header file has been previously included, and if it has, ignores the rest of the file.
The name of the variable tested looks like _WF_FILE_HH, where "FILE_HH" is replaced by the header file name,
using underscore for any character not legal in an identifier. Immediately after the test, the variable is defined.

1.

 #ifndef _WF_FILENAME_HH
 #define _WF_FILENAME_HH

A block comment describing the contents of the file. A description of the purpose of the entities in the files is more
useful than just a list of class names. Keep the description short and to the point.

1.

The RCS $Header$ variable should be placed as the end of the block comment, or in a comment immediately
following it:

2.

// $Header$

#include directives. Every header file should be self-sufficient, including all other header files it needs.1.

Since implementations will change, code that places "implementation-required #includes" in clients could cause them to
become tied to a particular implementation.

The following items are a suggested order. There will be many times where this ordering is inappropriate, and should be
changed.

const declarations.1.

Forward class, struct, and union declarations.2.

struct or union declarations.3.

typedef declarations.4.

class declarations.5.

The rest of these items should be in found this order at the end of the header file.

Global variable declarations (not definitions). Of course, global variables should be avoided, and should never be used
in interfaces. A class scoped enum or const can be used to reduce the need for globals; if they are still required they
should be either file-scope static or declared extern in a header file.

1.

External declarations of functions implemented in this module.2.

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (5 of 40) [10/1/2000 6:52:23 PM]

The header guard's #endif need be followed by a comment describing the #ifdef head guard.
After all, it is the last directive in the file and should obvious.

3.

3.4 Source File Content

Do not place the implementation of more than one interface in a single source file. (Classes private to an implementation
may be declared and defined within the same source file.)

●

The ordering of sections for implementation files is as the same as for header files through step [10], but without the
#ifndef/#endif multiple inclusion guard (see Template for C++ Implementation files on page 45). After that the
order should be:

●

Global scope variable definitions. Global variables (both external and file-static) are problematic in a multi-threaded
and/or in a reentrant server context. They should be avoided. (This is also a problem for non-const class static member
variables.)

1.

File scope (static) variable definitions.2.

Function definitions. A comment should generally precede each function definition.3.

4 Preprocessor

Preprocessor directives must always have the # in column 1. No indentation allowed for preprocessor directives.●

Don't use absolute path names when including header files. Use the form●

 #include <module/name>

to get public header files from a standard place. The -I option of the compiler is the best way to handle the pseudo-public
"package private" header files used when constructing libraries--- it permits reorganizing the directory structure without
altering source files.

4.1 Macros (#define)

Macros are almost never necessary in C++.

The construct #define NAME value should never be used. Use a const or enum instead.●

The debugger can deal with them symbolically, while it can't with a #define, and their scope is controlled and they only
occupy a particular namespace, while #define symbols apply everywhere except inside strings.

Macros in C are frequently used to define "maximum" sizes for things. This results in data structures that impose
arbitrary size restrictions on their usage, a particularly insidious source of bugs. Try not to carry forward this limitation
into C++.

●

Consider using inline functions instead of parametrized macros (but see Use and Misuse of inline, § 11.4 first!).●

Macros should be used to hide the ## or #param features of the preprocessor and encapsulate debugging aids such as
assert(). (Code that uses these features should be rare.) If you find that you must use macros, they must be defined so that
they can be used anywhere a statement can. That is, they can not end in a semicolon. To accomplish this, multi-statement
macros that cannot use the comma operator should use a do/while construct:

#define ADD(sys,val) do { \
 if (!known_##sys(val)) \
 add_##sys(val);\
 } while(0)

This allows ADD() to be used anywhere a statement can, even inside an if/else construct:

 if (doAdd)
 ADD(name, "Corwin");
 else

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (6 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF53116

 somethingElse();

It is also robust in the face of a missing semicolon between the ADD() and the else.

This technique should not be used for paired begin/end macros. In other words, if you have macros that bracket an operation,
do not put a do in the begin macro and its closing while in the end macro.

This makes any break or continue between the begin and end macro invocations relative to the hidden do/while loop,
not any outer containing loop.

4.2 Conditional Compilation (#if and its ilk)

In general, avoid using #ifdef. Modularize your code so that machine dependencies are isolated to different files and beware
of hard coding assumptions into your implementation.

The # of all preprocessor commands must always be in column 1.●

Never use indentation for preprocessor directives.●

If you use #ifdef to select among a set of configuration options, you need to add a final #else clause containing a
#error directive so that the compiler will generate an error message if none of the options has been defined:

●

#ifdef sun

#define USE_MOTIF
#define RPC_ONC

#elif hpux

#define USE_OPENLOOK
#define RPC_OSF

#else

#error unknown machine type

#endif

Test for features, not for systems, since features sometimes get added to systems. For example, if you are writing code
that deals with networking, you should define and test for macros like USE_STREAMS or USE_SOCKETS, not for
predefined system names like sun, hpux, SYSV, etc., that you happen to "know" support one or the other form.

●

Never change the language's syntax via macro substitution. For example, do not do the following:●

#define BEGIN { // EXTREMELY BAD STYLE!!!
#define when break;case // EXTREMELY BAD STYLE!!!

This makes the program unintelligible to all but the perpetrator. C++ is hard enough to read as it is.

#else, #elif, and #endif should have commented tags identifying the #if construct to which it is attached if there
are several levels of ifdefs or more than a page worth of code is placed between the #ifdef and #endif.

●

#ifdef RPC_ONC
 doONCStuff();
#endif

It is considered extremely distasteful, and therefore to be avoided wherever possible, to have a preprocessor conditional
that changes the blocking. When you do, the curly-brace rules may be broken:

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (7 of 40) [10/1/2000 6:52:23 PM]

#ifdef DEBUG
 if (!debug) // #ifdef breaks standard braces rule
#endif
 {
 doSomeStuff();
 doMoreStuff();
 }

5 Identifier Naming Conventions

Identifier naming conventions make programs more understandable by making them easier to read. They also give information
about the purpose of the identifier. Each subsystem should use the same conventions consistently. For example, if the variable
offset holds an offset in bytes from the beginning of a file cache, the same name should not be used in the same subsystem
to denote an offset in blocks from the beginning of the file.

We have made an explicit decision to not use Hungarian Notation.(2)

5.1 General Rules

Identifiers should be meaningful. That is, they should be easy to understand and provide good documentation about
themselves. Avoid abbreviations, especially ad hoc ones.

●

Well chosen names go a long way toward making a program self-documenting. What is an obvious abbreviation to you may be
baffling to others, especially in other parts of the world. Abbreviations make it hard for others to remember the spelling of
your functions and variables. They also obscure the meaning of the code that uses them.

Single character variable names should be avoided because of the difficulty of maintaining code that uses them.
However, single character names may be appropriate for variables that are essentially meaningless, such as dummy loop
counters with short loop bodies or temporary pointer variables with short lifetimes.

●

Avoid variables that contain mixtures of the numbers 0 & l and the letters O and 1, because they are hard to tell apart.●

Avoid identifiers that differ only in case, like foo and FOO. Having a type name and a variable differing in only in case
(such as String string;) is permitted, but discouraged.

●

5.2 Identifier Style

Identifiers are either upper caps, mixed case, or lower case. If an identifier is upper caps, word separation in multi-word
identifiers is done with an underscore (for example, RUN_QUICK). If an identifier is mixed case, it starts with a capital, and
word separation is done with caps (for example, RunQuick). If an identifier is lower case, words are separated by underscore
(for example, run_quick). Preprocessor identifiers and template parameters are upper case. The mixed case identifiers are
global variables, function names, types (including class names), class data members, enum members. Local variables and class
member functions are lower case.

Template parameter names act much like #define identifiers over the scope of the template. Making them upper case calls
them out so they are readily identifiable in the body of the template.

An initial or trailing underscore should never be used in any user-program identifiers.(3)

Prefixes are given for identifiers with global scope (some packages may extend the prefixes for their identifiers):

--
Prefix Used for
--
WF_ preprocessor
WF hidden preprocessor (e.g., protecting symbols for header file)
Wf Global scope (global variables, functions, type names).
wf File-static scope

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (8 of 40) [10/1/2000 6:52:23 PM]

--

File-static identifiers, are the only exception: they are mixed case, but start with a lower-case prefix. (for example,
wfFileStaticVar).

5.3 Namespace Clashes

The goal of this section is to provide guidance to minimize potential name clashes in C++ programs and libraries.

There are two solution strategies: (1) minimize the number of clashable names, or (2) choose clashable names that minimize
the probability of a clash. Strategy (1) is preferable, but clashable names cannot be totally eliminated.

Clashable names include: external variable names, external function names, top-level class names, type names in public header
files, class member names in public header files, etc. (Class member names are scoped by the class, but can clash in the scope
of a derived class. Explicit scoping can be used to resolve these clashes.)

There are two kinds of name clash problem:

Clashes that prevent two code modules from being linked together. This problem affects external variable names,
external function names, and top-level class names.

1.

Clashes that cause client code to fail to compile. This problem affects type names in public header files, and class
member names in public header files. It is most egregious in the case of names that are intended to be private, such as
the names of private class members, as a new version of the header file with new private names could cause old client
code to break.

2.

Solutions:

Minimize the number of clashable names by:●

Avoiding the use of external variables and functions, in favor of class data members and function members.1.

Minimizing the number of top-level classes, by using nested classes.2.

Minimizing the number of private class members declared in public header files. Private class members should be
defined in public header files only where clients need to perform implementation inheritance. To minimize the number
of dependencies on the data representation, define a single private data member of an opaque pointer type that points to
the real data representation whose structure is not published.

3.

Minimize the likelihood of clashes by use distinctive prefixes in clashable identifiers.●

Exception: A top-level class name used only as a naming scope can consist entirely of a distinctive prefix.

WfRenderingContext (a type name)
WfPrint() (a function name)
WfSetTopView() (a function name)
WfMasterIndex (a variable name)
Wf::String (a type name --- the class name serves as prefix)

For components of the Wildfire program, prefixes begin with Wf.

5.4 Reserved Namespaces

Listed below are explicitly reserved names which should not be used in human-written code (it may be permissible for
program generators to use some of these).

From the ANSI C Specification (9899:1990(E)) 7.1.3: "All identifiers that begin with an underscore and either an
uppercase letter or another underscore are always reserved".

●

[A-Z][0-9A-Za-z_]*

"All identifiers that begin with an underscore are always reserved for use as identifiers with file scope."●

[a-z][0-9A-Za-z]*

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (9 of 40) [10/1/2000 6:52:23 PM]

The following names are also reserved by ANSI for its future expansion:●

E[0-9A-Z][0-9A-Za-z]* errno values
is[a-z][0-9A-Za-z]* Character classification
to[a-z][0-9A-Za-z]* Character manipulation
LC_[0-9A-Za-z_]* Locale
SIG[_A-Z][0-9A-Za-z_]* Signals
str[a-z][0-9A-Za-z_]* String manipulation
mem[a-z][0-9A-Za-z_]* Memory manipulation
wcs[a-z][0-9A-Za-z_]* Wide character manipulation

Note that the first three namespaces are hard to avoid. In particular, many accessor methods naturally fall into the is*
namespace, and error conditions map onto the E* namespace. Be aware of these conflicts and make sure that you are not
redefining existing identifiers.

6 Using White Space

Blank lines and blank spaces improve readability by offsetting sections of code that are logically related. A blank line should
always be used in the following circumstances:

After the #include section.●

When switching from preprocessor directives to code or vice versa.●

Around class, struct, and union declarations.●

Around function definitions.●

Before groups of switch statement case labels that are logically grouped together.●

The guidelines for using spaces are:

A space must follow a keyword whenever anything besides a ; follows the keyword.●

Spaces may not be used between procedure names and their argument list.●

 // no space between 'strcmp' and '(',

 // but space between 'if' and '('

 if (strcmp(input_value, "done") == 0)
 return 0;

This helps to distinguish keywords from procedure calls.

Spaces must appear after the commas in argument lists.●

There should be no spaces on either side of [] () . ->●

All other binary operators must be separated from their operands by spaces. In
other words, spaces should appear around assignment, arithmetic, relational, and
logical operators, and they should not appear around . and ->.

●

Spaces must never separate unary operators such as unary minus, address of, indirection, increment, and decrement from
their operands. Some judgment is called for in the case of complex expressions, which may be clearer if the "inner"
operators are not surrounded by spaces and the "outer" ones are. Remember that temporary variables are "cheap", and
that several simpler expressions may be more understandable than one long complicated one.

●

Spaces precede an open brace that shares a line, and follow a closing brace that shares a line.●

The expressions in a for statement must be separated by spaces:●

 for (expr1; expr2; expr3) {

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (10 of 40) [10/1/2000 6:52:23 PM]

 ...;
 }

If you know you are constructing an object with a cast, you should use the function form (for example, String(sp))
as a clue to the reader.

●

Form-feeds must never be used.●

Using extra white space to line up related things in a set of lines can be worthwhile; such "violations" of the standard do
not require the otherwise-mandatory expiatory comment (see Fundamental MetaRule, § 2).

●

 start= (a < b ? a : b);
 end= (a > b ? a : b);

6.1 Indentation

Only four-space line indentation should be used. The exact construction of the indentation (spaces only or tabs and spaces) is
left unspecified. However, you may not change the settings for hard tabs in order to accomplish this. Hard tabs must be set
every 8 spaces.

If this rule was not followed tabs could not be used since they would lack a well-defined meaning.

The rules for how to indent particular language constructs are described in Statements, § 10.

6.2 Long Lines

Occasionally an expression will not fit in the available space in a line; for example, a procedure call with many arguments, or a
logical expression with many conditions. Such occurrences are especially likely when blocks are nested deeply or long
identifiers are used.

If a long line needs to be broken up, you need to take care that the continuation is clearly shown. For example, the
expression could be broken after the last comma of a function call (never in the middle of a parameter expression), or
after the last operator that fits on the line. If they are needed, subsequent continuation lines could be broken in the same
manner, and aligned with each other.

●

 if (LongLogicalTest1 || LongLogicalTest2 ||
 LongLogicalTest3) {
 ...;
 }

 a = (long_identifier_term1 --- long_identifier_term2) *
 long_identifier_term3;

If there were some correlation among the terms of the expression, it might also be written as:

 if (ThisLongExpression < 0 ||
 ThisLongExpression > max_size ||
 ThisLongExpression == SomeOtherLongExpression) {
 ...;
 }

Placing the line break after an operator alerts the reader that the expression is continued on the next line. If the break were to
be done before the operator, the continuation is less obvious.

Note also that, since temporary variables are cheap (an optimizing compiler will generate similar code whether or not you use
them), they can be an alternative to a complicated expression:

temp1 = LongLogicalTest1;
temp2 = LongLogicalTest2;
temp3 = LongLogicalTest3;

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (11 of 40) [10/1/2000 6:52:23 PM]

if (temp1 || temp2 || temp3) {
 ...;
}

6.3 Comments

Comments should be used to give an overview of the code and provide additional information that is not readily
understandable from the code itself. Comments should only contain information that is germane to reading and understanding
the program.

In general, avoid including in comments information that is likely to become out-of-date. For example, information
about how the corresponding package is built or in what directory it resides should not be included as a comment in a
source file. Discussion of nontrivial design decisions is appropriate, but avoid duplicating information that is present in
(and clear from) the code. It is too easy for such redundant information to get out-of-date.

●

C++ style comments (//) are preferred over C style (/*...*/), though both are permitted.●

Comments should never include special characters, such as form-feed and backspace.●

Frequently there is a need to leave reminders in the code about uncompleted work or special cases that are not handled
correctly. These comments should be of the form:

●

//!! When we can, replace this code with a wombat -author

This gives maintainers some idea of whom to contact. It also allows one to easily grep the source looking for unfinished
areas.

6.4 Block Comments

Block comments are used to describe a file's contents, a function's behavior, data structures, and algorithms.

Block comments should be used at the beginning of each file and before each function.●

The comment at the beginning of the file containing main() should include a description of what the program does.
The comments at the beginning of other files should just describe that file.

●

The block comment that precedes each function should document its behavior, input parameters, algorithm, global
variables used, and returned value.

●

Comments may not have a right-hand line (such as the right edge of a box) drawn with asterisks or other characters.●

This would require anyone changing the text in the box to continually deal with keeping the right-hand line straight.

In many cases, block comments inside a function are appropriate and should be indented at least to the same indentation
level as the code that they describe. A block comment should be preceded by a blank line, empty comment lines, or
otherwise visually separated from the rest of the code. A separation after the block comment is optional, but be
consistent.

●

statements;

// another block comment

// made up of C++ style comments

statements;
/*
 * Here is a C-style block comment
 * that takes up multiple lines.
 */

statements;

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (12 of 40) [10/1/2000 6:52:23 PM]

6.5 Single-Line Comments

Short comments may appear on a single line indented at least to the indentation level of the code that follows.

 if (argc > 1) {
 // Get option from the command line.
 ...;
 }

6.6 Trailing Comments

Very short comments may appear on the same line as the code they describe, but should be tabbed over far enough to separate
them from the statements. Trailing comments are useful for documenting declarations.

If multiple trailing comments are used in a block of code, they all should be tabbed to the same level.●

 if (a == 2)
 return WfTrue; // special case
 else
 return is_prime(a); // works only for odd a

Avoid the assembly language style of commenting every line of executable code with a trailing comment.●

7 Types

7.1 Constants

Numerical constants must be coded so that they can be changed in exactly one place. The usual method to define
constants is to use const or enum. (See Macros (#define) on page 5.) The enum data type is the preferred way to
handle situations where a variable takes on only a discrete set of values because of the added type checking done by the
compiler:

●

class Foo
{
 public:
 enum {
 Success = 0, Failure = -1
 };
 ...;
}

if (foothing.foo_method("Argument") == Foo::Success) ...

Unlike in ANSI C, integral typed objects in C++ that are declared const and initialized with compile-time expressions
are themselves compile-time constants. Thus, they can be used as case labels and such.

●

Well recognized constants, such as 0, 1, and -1, can often be used directly. For example if a for loop iterates over an
array, then it is reasonable to code:

●

 for (i = 0; i < size; i++) {
 // statements using array[i];
 }

Note that <wfbase.hh> defines the constants WfTrue and WfFalse, as well as the type WfBoolean, as ensures
the constant NULL is available.

●

Wherever possible, sizes should be expressed in terms of the sizeof operator. For example, if an array's size is
determined by its initializers, the proper construct for determining the number of elements it has is:

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (13 of 40) [10/1/2000 6:52:23 PM]

double factors[] = {
 0.1345,
 123.23451,
 0.0
 };

const int num_factors = sizeof factors / sizeof factors[0];

Wherever possible, sizeof operations should be applied to objects, not types. Parentheses are not allowed around the
object specifier in a sizeof expression.

●

This means that if the type of an object changes, all the associated sizeof operations will continue to be correct. The
parentheses are forbidden for data objects so that sizeof on types (where the compiler requires them) will be easy to see.

7.2 Use of const

Both ANSI C and C++ add a new modifier to declarations, const. This modifier declares that the specified object cannot be
changed. The compiler can then optimize code, and also warn you if you do something that doesn't match the declaration.

The first example is a modifiable pointer to constant integers: foo can be changed, but what it points to cannot be. Use this
form for function parameter lists when you accept a pointer to something that you do not intend to change (for example,
strlen(const char *string))

const int *foo;

foo = &some_constant_integer_variable

Next is a constant pointer to a modifiable integer: the pointer cannot be changed (once initialized), but the integer it points to
can be changed at will:

int *const foo = &some_integer_variable;

Finally, we have a constant pointer to a constant integer. Neither the pointer nor the integer it points to can be changed:

const int *const foo = &some_const_integer_variable;

Note that const objects can be assigned to non-const objects (thereby making a copy), and the modifiable copy can of
course be changed. However, pointers to const objects cannot be assigned to pointers to non-const objects, although the
converse is allowed. Both of these forms of assignments are legal:

(const int *) = (int *);

(int *) = (int *const);

But both of these forms are illegal:

(int *) = (const int *); // illegal

(int *const) = (int *); // illegal

When const is used in an argument list, it means that the argument will not be modified. This is especially useful when you
want to pass an argument by reference, but you don't want the argument to be modified.

void
block_move(const void *source, void *destination, size_t length);

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (14 of 40) [10/1/2000 6:52:23 PM]

Here we are explicitly stating that the source data will not be modified, but that the destination data will be modified. (Of
course, if the length is 0, then the destination won't actually be modified.)

All of these rules apply to class objects as well:

class Foo
{
 public:
 void bar1() const;
 void bar2();
};

const Foo *foo_pointer;
foo_pointer->bar1(); // legal

foo_pointer->bar2(); // illegal

Inside a const member function like bar1(), the this pointer is type (const Foo *const), so you really can't
change the object.

However, there is a distinction between bit-wise const and logical const. A bit-wise const function truly does not modify any
bits of data in the object. This is what the compiler enforces for a const member function. A logical const function modifies
the bits, but not the externally visible state; for example, it may cache a value. To users of a class, it is logical, not bit-wise,
const is important. However, the compiler cannot know if a modification is logically const or not.

You get around this by casting away const, for example, by casting the pointer to be a (Foo *). This should only be done if
you are absolutely sure that the function remains logically const after your operation, and must always be accompanied by an
explanatory comment.

7.3 struct and union Declarations

A struct should only be used for grouping data; there should be no member functions. If you want member functions, you
should be using a class. Hence, structs should be pretty rare.

The opening brace should be on the same line as the struct or union name.●

The closing brace should be on a separate line followed by a semicolon, lining up with the start of the struct or
union keyword.

●

Declarations in a struct or union should be indented one level.●

struct Foo {
 int size; // Measured in inches
 char *name; // Label on icon
 ...;
};

Note that struct and enum tag names are valid types in C++, so the following common C idiom is obsoleted because foo
can be used wherever you used to use Foo:

 typedef struct foo { /* Obsolete C idiom */
 ...;
 } Foo;

7.4 enum Declarations

The enum tag and the opening brace should be on the same line as the enum keyword.●

The layout for an enum is the same as for a struct if it takes up multiple lines, or it contains explicit initializers. It
also can be contained on one line as shown below.

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (15 of 40) [10/1/2000 6:52:23 PM]

The last item in an enum's element list should not be followed by a comma (`,').●

Where possible, the type declaration should occur within the scope of a class instead of polluting the global-scope
namespace. (See Namespace Clashes on page 8.) When doing this, references to the constants outside of the class's
member functions must be qualified:

●

class Color
{
 public:
 enum Component {
 Red, Green, Blue
 };
};
Color::Component foo = Color::Red;

If your constants define a related set, make them an enumerated type.●

const int Red = 0; // Bad Form
const int Blue = 1;
const ink Green = 2;
enum ColorComponent { // Much Better
 Red,
 Blue,
 Green
};
enum ColorComponent { // Explicit values can be given
 Red = 0x10, // to each item as well...
 Blue = 0x20,
 Green = 0x40
};

This causes ColorComponent to become a distinct type that is type-checked by the compiler. Values of type
ColorComponent will be automatically converted to int as needed, but an int cannot be changed to a
ColorComponent without a cast.

Some compilers can generate a useful warning when confronted with a switch statement on an enum variable that
does not have all elements of the enum expressed as case labels. This situation usually indicates a logic error in the
code.

●

If you need a constant for the number of elements in an enum, make the last element of the enum be a last field.●

enum Color {
 Red,
 Blue,
 Green,
 LastColor = green
};

This trick should only be used when you need the number of elements, and will only work if none of the enumeration literals
are explicitly assigned values.

7.5 Classes

Only functions should be public or protected. Member data must always be private.●

All inheritance must be public. private and protected inheritance is not allowed.●

It is very important to make sure that your class acts like a black box. The interface you export to clients and subclasses
should reflect precisely what they need to know and nothing more. You should ask yourself, for every member function

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (16 of 40) [10/1/2000 6:52:23 PM]

you export (remember, you're not exporting any public or protected data members, right?), "Does my client (or
subclass) really need to know this, or could I recast the interface to reveal less?"

Member functions should be declared const whenever possible (see Use of const on page 14).●

7.6 class Declarations

The opening brace for a class should be on a separate line in the same column as the class keyword.●

This is to help users of vi, which has a simple "go to beginning of paragraph" command, and which recognizes such a line as
a paragraph beginning. Thus, you can, in the middle of a long class declaration, go to the beginning of the class with a simple
command. The usefulness of this feature was deemed to outweigh its inconsistency (also see. section 9.2).

The closing brace should be on a separate line followed by a semicolon, lining up with the start of the class keyword.●

The members of a class are indented similarly to those of a struct (see struct and union Declarations on page 15).●

The public, protected, and private sections of a class should be present (if at all) in that order, indented 1/2
an indent level past that of the opening brace.

●

The ordering is "most public first" so people who only wish to use the class can stop reading when they reach
protected/private.

Do not have public or protected data members --- use private data with public or protected access
methods instead.

●

class Foo: public Blah, private Bar
{
 public:
 Foo(); // be sure to use better
 ~Foo();
 int get_size(int phase_of_moon) const; // comments than
these.
 int set_size(int new_size);
 virtual int override_me() = 0;

 protected:

 static int hidden_get_size();

 private:
 int Size; // meaningful comment
 void utility_method();
};

Public and protected data members affect all derived classes and violate the basic object oriented philosophy of data
hiding.

7.7 Class Constructors and Destructors

Constructors and destructors are used for initializing and destroying objects and for converting an object of one type to another
type. There are lots of rules and exceptions to the use of constructors and destructors in C++, and programs that rely heavily on
constructors being called implicitly are hard to understand and maintain. Be careful when using this feature of C++!

Be particularly careful when writing constructors that accept only one argument (or use default arguments that may allow a
multi-argument constructor to be used as if it did) since such constructors specify a conversion from their argument type to the
type of its class. Such constructors need not be called explicitly and can lead to unintended implicit uses of conversions. There
are also other difficulties with constructors and destructors being called implicitly by the compiler when initializing references
and when copying objects.

Things to do to avoid problems with constructors and destructors:

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (17 of 40) [10/1/2000 6:52:23 PM]

When passing objects as parameters to functions you will want to consider passing them by pointer or by reference. If
you pass an object by value, a constructor will be called to initialize the formal parameter, which may not be what you
want. Similarly, when returning from a function you may wish to return a pointer to the object instead of the object
itself. Just be aware of memory "leaks" and object "hygiene" when doing this. (For an in depth exploration of this area,
see Items 22 and 23 in Effective C++ [12].)

●

Be careful when copying objects --- unless you redefine the assignment operator=, the compiler will perform a
member-wise copy, which may not be the behavior expected. Note that initialization and assignment are generally very
different operations.

●

If you want to make sure that for a given class no member-wise copying is allowed, define a private assignment operator
for the class.

●

This will cause the compiler to generate a compile-time error if a
member-wise copy is attempted.

Study this area carefully. Chapter 12 of the ARM [10] is the authoritative reference on the subject, and Effective C++
[12] tells you many useful things.

●

The constructor and destructor declarations line up with the member function names.●

class Foo
{
 public:
 Foo();
 ~Foo();

 int get_size(int phase_of_moon) const;

 private:

 ...

};

Constructors invoked by your constructor must be one indentation level in from the constructor declaration. For
constructors declared on a single line, the : is on the same line as the closing parenthesis. Constructors that take multiple
lines to declare have their : on the line following the last paramter, indented to the same level as the beginning of the
constructor name.

●

BusStop::BusStop() :
 PeopleQueue(30),
 Port("Default")
{
 ...;
}
BusStop::BusStop(char *some_argument) :
 PeopleQueue(30),
 Port(some_argument)
{
 ...;
}

Be careful about static initialization. If you design a class that depends on some other facility in its constructor, be
careful about order dependencies in static initialization. The order in which static constructors (that is, the
constructors of objects with static storage class) get called is undefined. You cannot count on one object being
initialized before another. Therefore, if you have such a dependency, you must either document that your class cannot be

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (18 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF23424
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325

used for static objects, or you must use "lazy evaluation" to defer the dependency until later (see Item 47 in Effective
C++ [12] for more details).

7.8 Automatically-Provided Member Functions

C++ automatically provides the following methods for your classes (unless you provide your own):

a constructor,●

a copy constructor,●

an assignment operator,●

two address-of operators (const and non-const), and●

a destructor.●

class Empty { }; // You write this ...
class Empty // You really get this ...
{
 public:
 Empty() { } // constructor
 ~Empty() { } // destructor
 Empty(const Empty &rhs); // copy constructor
 Empty &operator=(const Empty &rhs); // assignment operator
 Empty *operator&(); // address-of
 const Empty *operator&() const; // operators
};

Every class writer must consider whether the default functions are correct for that class. If they are, a comment must be
provided where the function would be declared so that a reader of the class knows that the issue was considered, not forgotten.

If a class has no valid meaning for these functions, you should declare an implementation in the private section of the class.
Such a function should probably call abort(), throw an exception, or otherwise generate a visible runtime error.

This ensures that the compiler will not use the default implementations, that it will not allow users to invoke that function, and
that if a member function uses it by accident, it may at least be caught at runtime.

It is a good idea to always define a constructor, copy constructor, and a destructor for every class you write, even if they don't
do anything.

7.9 Function Overloading

Overloading function names must only be done if the functions do essentially the same thing. If they do not, they must not
share a name. Declarations of overloaded functions should be grouped together.

7.10 Operator Overloading

Deciding when to overload operators requires careful thought. Operator overloading does not simply create a short-hand for an
operation --- it creates a set of expectations in the mind of the reader, and inherits precedence from the language.

You should only use an operator shorthand if the logical meaning of applying the operator on the type(s) involved is
intuitive, either because of common usage (for example, + on strings concatenates, << adds to a stream) or real algebra
on the types (for example, a position class plus an offset gets a different position).

●

If you overload one operator of a logically connected set, you must overload the rest of the set, if for no other reason
than to generate an error if the others are called when they are not meaningful. Overloading < without overloading > or
>= will astonish the user in unhappy ways, as will overloading + and = but not += . In particular, -> . and [] should
always be considered a set:

●

foo->member() // should be identical to

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (19 of 40) [10/1/2000 6:52:23 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF94325

(*foo).member() // which should also be identical to
foo[0].member()

Overloading == requires overloading !=, and vice versa.

If the expression (a != b) is not equivalent to !(a == b) we have unacceptably astonished the user.

Note that while you can overload operators, you cannot change the language's precedence rules.●

If an operator in a set does not make sense, you must override it in the private section so that the compiler will report
the error to anyone who assumes that the set is complete. However, this should be a flag for you to consider whether the
operator overloading really is natural --- the strong presumption is that you are not going to override all members in the
set then none of the members of the set should be overridden.

●

Use type-cast operators selectively. Like so many C++ features, type casting can either clarify or obscure your code. If a
type cast seems "natural", like the conversion between floating point and integers, then providing a cast function seems
like a good idea. If the conversion is unusual or nonsensical, then the existence of a cast function can make it very hard
to figure out what's going on. In the latter case, you should define a conversion function that must be called explicitly.
If you provide a type-cast operator, you must provide an equivalent conversion function as well.

●

This allows the user of the class to determine if a cast is more readable than a member function invocation, for example, to
avoid casts that look like they should be automatically done by the compiler, but are explicit to invoke the cast.

7.11 Protected items

When a member of a class is declared protected, to clients of the class it is as if the member were private. Subclasses,
however, can access the member as if it were declared private to them. This means that a subclass can access the member, but
only as one of its own private fields. Specifically, it cannot access a protected field of its parent class via a pointer to the parent
class, only via a pointer to itself (or a descendant).

7.12 friends

When using friends remember that private member access rights do not extend to subclasses of the friend class. Any method
that depends on friend access to another class cannot be rewritten in a subclass.

When applied to a class (friend Classes, § 7.12.1, class Base, below), the friend keyword denotes a class-global
behavior change that is being applied to the friend class. As such, it is not governed by the class part designation
(public, protected, or private) currently in force. Thus, the friend keyword should be indented to the same
level as these class part names.

●

In all other cases where the friend keyword is used, (see friend int operator==, section 7.12.2) it should be
treated as a type modifier in the same sense that static, extern, and virtual are. That is, the word friend is
lined up along with the other type specifiers one indent level from the level of the class itself.

●

If friend is needed between classes, friend member functions are preferred to making the entire class a friend.●

The use of friend class or method declarations is discouraged, since the use of friend breaks the separation between the
interface and the implementation. The only non-discouraged uses are for binary operators and for cooperating classes that need
private communication, such as container/iterator sets.

7.12.1 friend Classes

All friend class declarations must come at the end of the class declaration.●

If a friend class declaration is necessary and the friend class is intended to be subclassable, the friend class must
be written so that its subclasses have the same access rights as the base class. To do this, any access depending on the
friend declaration is encapsulated in a protected function:

●

class Secret
{
 private:
 int Data;

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (20 of 40) [10/1/2000 6:52:24 PM]

 int method();

 friend Base;
};

class Base
{
 protected:
 int secret_data(Secret *income_info);
 int secret_method(Secret *income_info);
};

int
Base::secret_data(Secret *income_info)
{
 return income_info->Data;
}

int
Base::seccet_method(Secret *income_info)
{
 return income_info->method();
}

Methods of the Secret class should not be accessed directly by methods of the friend class Base. Direct access makes it
hard to cut-and-paste code from the base to a derived class:

void
Base::an_example(Secret *income_info)
{
 int a = income_info->Data; // BAD: Direct access is wrong
 int b = secret_data(income_info); // GOOD: Use accessor
functions!
}

7.12.2 friend Methods

Binary operators, except assignment operators, must almost always be friend member functions.

class String
{
 public:
 String(const char *);

 friend int operator==(const String &,const String &);
 friend int operator!=(const String &,const String &)
 { return !(string1 == string2); }
};

If the operator== were a member function, the conversion operator would only allow (String == char *) but not
(char * == String) This would be quite surprising to the user of the class. Making operator== a friend member
function allows the conversion implied by the constructor to work on both sides of the operator.

7.13 Templates

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (21 of 40) [10/1/2000 6:52:24 PM]

The template specifier for a template class should be placed alone on the line preceding the "class" keyword or the return
type for a function. The following header for the template definition should be indented 1/2 indent level:
As an example:

●

 template<class TYPE>
 class List
 {
 public:

 TYPE front();
 ...
 };

template<class TYPE>
TYPE
List<TYPE>::front()
{
 ...;
}

The names of general template parameters should be simple and all-purpose, since their types are normally not known.
On the other hand, specific template parameters should be given meaningful names to show their purpose. For example:

●

 template<class TYPE, unsigned int SIZE>
 class Vector
 {
 private:

 Type Data[SIZE];
 }

Here, the type stored by the Vector template class is named TYPE because it is a general purpose parameter. The SIZE
parameter, however, is specific since it ultimately determines the size of a Vector<TYPE> object; its name reflects this
specific purpose.

8 Variables

8.1 Placement of Declarations

Since C++ gives the programmer the freedom to place a variable definition wherever a statement can appear, they should be
placed near their use. For efficiency, it may be desirable to invoke constructors only when necessary. Thus function code may
define some local variables, do some parameter checking, and once the sanity checks have passed then define the class
instances and invoke their constructors.

Where possible, you should initialize variables when they are defined.

char *Foo[] = { "Hello", ", ", "World\n" };

int max_string_length = BUFSIZE;

String path("/usr/tmp/gogin");

This minimizes "used before initialization" bugs.

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (22 of 40) [10/1/2000 6:52:24 PM]

8.2 extern Declarations

Do not explicitly declare variables, types, or functions that you are not implementing. Include the appropriate public
header files instead.

●

If you are using a class, but all you need is the type name (for pointers or references), you should use the simple forward
declaration instead of including the header file (if you can):

●

class ClassName;

External declarations should only be placed in header files and should begin in column 1. A comment describing the role
of the identifier being declared should be included.

●

Place them in header files to prevent inconsistent declarations in each source file that uses it.

8.3 Indentation of Variables

The type names should be at the current indentation level.●

Type modifiers such as * and & should be with the identifier, not the type. The following style is forbidden:●

int* ip;
String& str;

This style, though currently popular, lies about syntax, since int* p1, p2; implies p1 and p2 are both pointers, but one is
not. Since we do not accept that only one variable should be declared on a line as a fixed rule, we cannot allow a style that lies
about the meaning of multiple declarations on a line.

Variable definitions should be indented to align the variables being declared, with identifiers lining up with each other
exclusive of preceding modifiers (*, &, etc.). (4)

●

int count = 0;

char **pointer_to_string = &foo;

8.4 Number of Variables per Line

One variable per line is recommended since it encourages commenting. In other words,●

int level = 0; // indentation level
int size = 0; // size of symbol table
int lines = 0; // lines read from input

is preferred over:

int level, size, lines; // Not Recommended

The latter style is frequently used for declaring several temporary variables of primitive types such as int or char, or
strongly matched variables, such as x, y pairs, where changing the type of one requires changing the type of all.

Variables and functions must not be declared on the same line:●

long db, OpenDb(); // Bad
long db; // Better
long OpenDb(); // but still not recommended

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (23 of 40) [10/1/2000 6:52:24 PM]

#include <admintools/database.hh> // Best

Databae db;

You should use a header file that contains an external function declaration of OpenDb() instead of hard-coding its definition
in your source file.

8.5 Definitions Hiding Other Definitions

Avoid local variable definitions that override (hide) variables defined at higher levels.●

void
WfFunction()
{
 static int boggle_count; // Count of boggles in formyls

 if (condition) {
 int boggle_count; // Bad --- this hides the above instance
 }
}

8.6 Initialized Variables

Opening braces on initializers must follow the = on the same line.●

If the initializers fit on one line, the closing brace should also be on that line.●

If the initializers don't fit comfortably on one line, they should be placed on separate lines, indented one level from the
variable name. In this case, the closing brace should be outdented one level from the initializer list.

●

This style is purposefully analogous to the function declaration style. It may look strange to some at first, but in the context of
a complete program, it lends itself to an overall pleasing appearance of the code.

Initializer lists must always have the optional trailing comma.●

Cat cats[] = {
 "Shamus",
 "Macka",
 "Tigger",
 "Xenephon",
 };

Initialized objects that require only one initializer should not use braces.●

char *name = "Framus";

9 Functions

9.1 Function Declarations

Function declarations should be lined up in accordance with Indentation of Variables, § 8.3 above.●

Function parameters should be listed as many per line as reasonable. Indention for new lines should occur at the open (.●

SomeType *WfLibraryFunctionName(void *current_pointer,
 size_t desired_new_size);

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (24 of 40) [10/1/2000 6:52:24 PM]

However, if a function takes only a few parameters, the declaration can be strung onto one line (if it fits):

int strcmp(const char *s1, const char *s2);

We usually use a one-line-per-declaration form for several reasons.
(1) It is easy to comment the individual parameters,
(2) It makes it easier to read when there many parameters.
(3) It is easy to reorder the parameters, or to add one. The closing); is on a line by itself to make it easier to add a new
parameter at the end of the parameter list.
(4) It is designed to be visually similar to the other declaration statements.
(5) It works well with long identifier names.
However, with simple declarations the weight seems too great for the benefit.

If the function takes no parameters, both the opening and closing parenthesis must be on the same line.●

int getchar();

The ANSI C-compatible construct of (void) for a function with no parameters must only be used in header files designed to
be included by both C and C++ (See Interaction with C on page 39.)

Function parameter names must be included in the function declaration, not just the parameter types. This applies as
well for usages where a function prototype is being used as a type (in other words, a typedef type). The only
exception is for operators and single-argument constructors where the meaning of the parameter is clear from that
context.

●

This provides internal documentation that can help people remember what a parameter is supposed to represent. It also allows
comments in the file to refer to the parameter by name.

Input-only function parameters must either be passed by value or as a const &.●

Values that may be modified by a function (input/output or output-only parameters) should be passed as references to
the thing that will be modified. (This closely resembles the Pascal var parameter) The alternative of passing pointers is
not encouraged, but is not prohibited. See References vs. Pointers, § 11.5 for more details.

●

9.2 Function Definitions

Function bodies should be small.●

Small functions promote clarity and correctness.

Each function definition should be preceded by a block comment that gives its name and a short description of what the
function does.

●

The full type of the value returned should be alone on a line in column 1 (int must be specified explicitly). If the
function does not return a value then it should be given the return type void. If the value returned requires a long
explanation, it should be given in the block comment above. The function name should be alone on a line beginning in
column 1 (the class name is included on the same line as the function name if the function is a method of a class).

●

char *
WfString::cstr()
{
 // ...
}

Parameter declarations are analogous to those in Function Declarations, § 9.1The opening brace of the function body
will be alone on a line beginning in column 1.

●

In the case of a function that has unused parameters, it may be useful to comment out the name of the unused parameter
in order to suppress compiler warnings. Except for callback routines, this usually is a questionable situation.

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (25 of 40) [10/1/2000 6:52:24 PM]

void
WfFoo(int param1, int /* optional_param2 */)
{
 // ...;
}

All local declarations and code within the function body are indented by one indentation level.●

int
SystemInformationObject::get_number_of_users(Name host_name, Time idle_time)
{
 int some_variable;

 statements;
 ...;
}

Never use the this variable in member functions to access members. In other words, you should never write
this->Anything.

●

10 Statements

Each line must contain at most one statement. In particular, do not use the comma operator to group multiple statements
on one line, or to avoid using braces. For example:

●

 argv++; argc--; // Multiple statements are bad

 if (err)

 fprintf(stderr, "error\n"), exit(1); // Using `,' is worse

argv++; // The right way

argc--;

if (err) {

 fprintf(stderr, "error\n");

 exit(1);

}

10.1 Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces.

The enclosed list must be indented one more level than the compound statement itself. The opening left brace must be at
the end of the line beginning the compound statement and the closing right brace must be alone on a line, positioned
under the beginning of the compound statement (see example below).

●

The left brace that begins a function body, a class definition, or a new scope are the only occurrences of a left brace
that should be alone on a line.

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (26 of 40) [10/1/2000 6:52:24 PM]

{

 // New Block Scope

 int some_variable;

 statements;

}

Braces are always used around any multi-line statement when it is part of a control structure, such as an if/else or
for statement, as in:

●

if (condition) { // braces required; following "if" is two lines

 if (other_condition) // braces not required -- only one line follows

 statement;

}

Braces are not required for control structures with single-line bodies, except for do/while loops, whose always require
enclosing braces. This single-line rule includes a full if/else/else/... statement:

if (condition)

 single_thing();

else if (other_condition)

 other_thing();

else

 final_thing();

Note that this is a "single-line rule", not a "single statement rule". It applies to things that fit on a single line.

Single-statement bodies are too simple to be worth the weight of the extra curlies.

10.2 if/else Statements

An else clause is joined to any preceding close curly brace that is part of its if. See also Comparing against Zero on page
34.

if (condition) {

 ...;

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (27 of 40) [10/1/2000 6:52:24 PM]

}
if (condition) {

 ...;

} else {

 ...;

}
if (condition) {

 ...;

} else if (condition) {

 ...;

} else {

 ...;

}

10.3 for Statements

 for (initialization; condition; update) {

 ...;

 }

If the three parts of the control structure of a for statement do not fit on one line, they each should be placed on separate lines
or broken out of the loop:

for (longinitialization;

 longcondition;

 longupdate

) {

 ...;

}
longinitialization; // Alternate form...

for (; condition; update) {

 ...;

}

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (28 of 40) [10/1/2000 6:52:24 PM]

When using the comma operator in the initialization or update clauses of a for statement, no more than two variables should
be updated. If there are more, it is better to use separate statements outside the for loop (for the initialization clause), or at the
end of the loop (for the update clause).

10.4 do Statements

 do {

 ...;

 } while (condition);

10.5 while Statements

 while (condition) {

 ...;

 }

10.6 Infinite Loops

The infinite loop is written using a for loop:

 for (;;) {

 ...;

 }

This form is better than the functionally equivalent while (TRUE) or while (1) since they imply a test against TRUE (or
1), which is neither necessary nor meaningful (if TRUE ever is not true, then we are all in real trouble).

10.7 Empty Loops

Loops that have no body must use the continue keyword to make it obvious that this was intentional.

while (*string_pointer++ != '\0')
 continue;

10.8 switch Statements

case labels should be on lines separate from the statements they control.●

case labels are indented to 1/2 an indent level beyond the level of the switch statement itself.●

We use this indentation since the labels are conceptually part of the switch, but indenting by a full indent would mean that
all code would be indented by two indent levels, which would be too much.

A blank line must appear before the first case label in a set of case labels, especially if the body code is large. (But
don't put a blank line right after the switch keyword)

●

The last break in the switch is, strictly speaking, redundant, but it is required nonetheless.●

This prevents a fall-through error if another case is added after the last one.

In general, the fall-through feature of the switch statement should rarely, if ever, be used (except for multiple case
labels as shown in the example). If it is used otherwise, it must be commented with:

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (29 of 40) [10/1/2000 6:52:24 PM]

 // FALLTHROUGH

where the break would normally be expected.

This makes it clear to the reader that it is this fallthrough was intentional.

A return statement should not be followed by a break.●

switch statements that use members of an enum should not have a default case. This means that if you have such a
switch, you must always have all members of the enum represented in explicit case labels, even if these only
execute a break.

●

Some C++ compilers will warn you if such a switch is missing a member. This warning will call out situations where you
add a member to an enum definition but forget to add a case for it in a given switch. This is usually an error.

switch statements keyed on non-enum values should have a default label if the code assumes that only certain
values will arrive. Such a default label should make sure that the erroneous situation is called to someone's attention,
such as by signalling an error or generating an error message.

●

 switch (pixel_color) {

 case Color::blue:

 ...;

 break;

 case Color::red:

 found_red_one = TRUE;

 // FALLTHROUGH

 case Color::purple:

 {

 int local_variable;

 ...;

 break;

 }

 default: // handles green, mauve, and pink colors...

 ...;

 break;

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (30 of 40) [10/1/2000 6:52:24 PM]

 }

This is to catch unexpected inputs in more graceful ways than failing unpredictably somewhere else in the code.

10.9 goto Statements

While not completely avoidable, use of goto is discouraged. In many cases, breaking a procedure into smaller pieces, or using
a different language construct will enable elimination of a goto.

The main place where a goto can be usefully employed is to break out of several nested levels of switch, for, or while
nesting when an error is detected. In future versions of C++ exceptions should be used.

 for (...) {

 for (...) {

 ...;

 if (disaster) {

 goto error;

 }

 }

 }

 return true;

error: // clean up the mess

Never use a goto to branch to a label within a block:●

 if (pool.is_empty()) {

 goto label; // VERY WRONG

 }

 for (...) {

 Object obj;

label:

 }

Branching into a block may bypass the constructor invocations and initializations for the automatic variables in the block.
Some compilers treat this as an error, others blissfully ignore it.

When a goto is necessary, the accompanying label must be alone on a line starting in column 1.●

10.10 return Statements

The expressions associated with return statements are not required to be enclosed in parentheses.

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (31 of 40) [10/1/2000 6:52:24 PM]

10.11 try/catch Statements

The proposed C++ syntax for exception handling is not to be used in shared code at this time (5). This section specifies the
syntax which will eventually be used to support the feature, but should be avoided in near term code.

We need a section describing an alternate way of handling exceptions so that we can use "boilerplate" code to do the right
thing now and help ease the transition to exceptions in the future.

The expressions associated with throw statements are not required to be enclosed in parentheses.●

Signaling an exception in a destructor is not a good idea, since any destructive behavior that has already taken place
probably cannot be reversed.

●

 try {
 statements;
 } catch (type) {
 statements;
 } catch (...) { // This is the literal "..."
 statements;
 }

11 Miscellaneous

11.1 General Comments & Rules

When incrementally modifying existing code, follow the style of the code you are modifying, not your favorite style.
Nothing is harder to read than code where the personal style changes from line to line.

●

Don't use global data. Consider using file- or class-static data members instead.●

File static variables are more appropriate than class-static variables, since they hide more of the class's implementation
from the reader of the header file. Of course, if you class implementation does not fit within one file, this technique will
not be usable.

●

In library code, don't use global or static objects that require constructors.●

This can used to support C programs being linked to C++ libraries without the use of a C++-aware linker. See Interaction
with C on page 39.

Don't use global (nonmember) functions when implementing classes --- use private member functions instead (except
binary operators --- see friend Methods, § 7.12.2.)

●

It's possible to partially circumvent the strong type checking C++ imposes on function arguments by using unspecified
(or <stdargs.h>) parameters. You should avoid doing this if at all possible. The classic example of this usage is:

●

void printf(const char *, ...);

Do not use a "type field" in a class when a virtual function can do the job. However, if you need to be able to narrow the
type of a superclass to its subclass then a type field is appropriate.

●

In expressions involving mixed operators, use parentheses to ensure desired results and to enhance clarity. Overuse of
parentheses tends to result in code that is difficult to read --- too few parentheses can result in expressions that are hard
to modify correctly.

●

Try to make the structure of your program match the intent. For example, replace:●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (32 of 40) [10/1/2000 6:52:24 PM]

if (BooleanExpression)

 return WfTrue;

else

 return WfFalse;

with:

return BooleanExpression;

Similarly,

if (condition) // Awkward

 return x;

return y;

is usually clearer when written as:

if (condition) // Clear

 return x;

else

 return y;

or

return (condition ? x : y);

Do not use the assignment operator in a place where it could be easily confused with the equality operator. For instance,
in the simple expression

●

if (x = y) { // Confusing

 ...;

}

it is hard to tell whether the programmer really meant assignment or the equality test.
Instead, use

if ((x = y) != 0) { // Understandable

 ...;

}

or something similar if the assignment is needed within the if statement. There is a time and a place for embedded
assignments. The ++ and -- operators count as assignments. So, for many purposes, do functions with side effects.

Do not use embedded assignments in an attempt to improve run-time performance --- this is the job of the compiler.●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (33 of 40) [10/1/2000 6:52:24 PM]

Note also that side effects within expressions can result in code whose semantics are compiler-dependent, since the
order of evaluation is explicitly undefined in most places. Compilers do differ.

As an aside, many of today's compilers can produce faster and/or smaller code if you don't use embedded assignments. If you
are using such convoluted code to "help the compiler optimize the program", you may be doing more harm than good.

Become familiar with existing library classes. You should not be writing your own string compare routine, or defining
your own memcpy() function. Not only does this waste your time, but it may prevent your program from taking
advantage of any hardware specific assists or other means of improving performance of these routines. It also makes
your code less readable, because the reader has to figure out whether you are doing something special in the
re-implemented routines to justify their existence.

●

11.2 Limits on numeric precision

C++ is a superset of ANSI-C in most respects; specifically it shares the ANSI specs on the C's built in types. This is all
you can safely assume:

--
Type Minimum Maximum Comments
 Value Value
--
signed char --128 127 They may hold more
unsigned char 0 255 They may hold more
char 0 127 Can't assume signed or
 unsigned
short --32,768 32,767 Minimum 16 bits
signed short
unsigned short 0 65,535 Minimum 16 bits
long --2,147,483,648 2,147,483,64 Minimum 32 bits
signed long 7
unsigned long 0 4,294,967,29 Minimum 32 bits
 5
int --32,768 32,767 Same as a short
signed int
unsigned int 0 65,535 Same as an unsigned short
--

●

A char may be unsigned or signed. You can't assume either. Thus, only use (unmodified) char if you don't care
about sign extension and can live with values in the range of 0-127.

●

An int cannot be counted on to hold more than a short int. It is an appropriate type to use if a short would be
big enough but you would like to use the processor's "natural" word size to improve efficiency (on some machines, a
32-bit operation is more efficient than a 16-bit operation because there is no need to do masking). If you need something
larger than a short, you must specify a long --- an int won't do.

●

Always use the right system-defined types for values: know and use size_t, ptrdiff_t, sigatomic_t where
appropriate.

●

11.3 Comparing against Zero

Comparisons against zero values must be driven by the type of the expression. This section shows the valid ways to compare
for given types. Anything not permitted here is forbidden.

When maintaining code it is very useful to be able to tell what "units" a comparison is using. As an example, an equality test
against the constant 0 implies that the variable being tested is an integral type; testing against an explicit NULL implies a
pointer comparison, while an implied NULL implies a boolean relationship.

(See if/else Statements on page 28)

11.3.1 Boolean

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (34 of 40) [10/1/2000 6:52:24 PM]

Choose variable names that make sense when used as a "condition". For example,

if (pool.is_empty())

makes sense, while

if (pool.state())

just confuses people. The generic form for Boolean comparisons are

if (boolean_variable)

if (!boolean_variable)

Note that this is the only case where an implicit test is allowed; all other comparisons (int, char, pointers, etc.) must
explicitly compare against a value of their type. A standalone variable should always imply a boolean value.

Never use the boolean negation operator! with non-boolean expressions. In particular, never use it to test for a null pointer or
to test for success of the strcmp() function:

if (!strcmp(s1, s2)) // Bad

if (strcmp(s1, s2) == 0) // Good

11.3.2 Character

if (char_variable != '\0')

while (*char_pointer != '\0')

11.3.3 Integral

if (integer_variable == 0)

if (integer_variable != 0)

11.3.4 Floating Point

if (floating_point_variable > 0.0)

Always exercise care when comparing floating point values. It is generally not a good idea to use equality or inequality type
comparisons. Use relative comparisons, possibly bounded by a "fuzz" factor in cases where an equality-like functionality is
required.

11.3.5 Pointer

if (pointer_variable != NULL) // Always use an explicit test vs.
NULL

Implicit comparisons are not allowed:

if (pointer_variable) // WRONG

11.4 Use and Misuse of inline

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (35 of 40) [10/1/2000 6:52:24 PM]

inline functions should not be used indiscriminately.●

Never use inline functions in public interface definitions.●

Since a client using your inlined interface actually compiles your code into their executable, you can never change this part of
your implementation. And no one else can provide an alternate implementation.

Some C++ compilers support a +w option which will warn you of the case where things declared inline aren't inlined.
When an inline function isn't inlined, it may be defined "file static" in every file that references it!

●

Within your implementation there may be places where you need to use inlines. Be aware that the use of inlines can easily
make your (and other people's) code larger, which can overcome any efficiency gains. Here are some guidelines to help do it
right.

As explained in Chapter 7 of the ARM, inlining is not a panacea and in general should be done after the program is
written, debugged and instrumented.

●

Small simple functions that only increment or return a value are usually good candidates for inlining. For most
functions, the time spent in a call is dominated by the time it takes to execute the body of the function and not by the
cost of calling it. Indiscriminate use of inlining results in larger programs that can take longer to execute due to a larger
working set that needs to reside in memory. Unless you know for sure that inlining a particular function is a win, do not
use inlining.

●

If your inline function just calls something else that isn't inline, that's fine, as long as the other function has identical
semantics. As an example, you might have a class that defines a virtual function is_equal(), which compares two
objects for equality. It also has an inline definition for operator==, as a notational convenience. Since operator==
just turns around and calls the is_equal() function, it may be OK for it to be inline and not virtual.

●

Do not use inlines just because your function just happens to have a one-line implementation.●

Use an inline function if efficiency is very, very important and you'll never change it.●

If you don't know (and can't prove) that your implementation must be inline, don't make it inline. Build it normally and
then measure the performance. Experience has shown again and again that programmers spend lots of time optimizing
code that hardly ever gets executed, while totally missing the real bottlenecks. The empirical approach is much more
reliable. Experience has also shown that a better algorithm or smarter data structures will buy you a lot more
performance than code tweaking.

●

Long inline functions should be declared simply as inline in the class, with the code presented immediately after the
class declaration:

●

class Dummy
{
public:
 inline int do_something();
};

inline int
Dummy::do_something()
{
 // ... several lines of code
}

11.5 References vs. Pointers

The advantages of using references over pointers include (from [25]):

A reference can only refer to an object. Its just another name for an existing object. Therefore, people reading the code
should be able to recognize immediately the intent of the programmer --- namely to refer locally to some object via this
one local name.

●

In some situations using multiple inheritance, a reference may be somewhat more efficient.●

A reference is always "const", in the sense that the reference cannot be re-assigned to refer to another object within the●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (36 of 40) [10/1/2000 6:52:24 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF65323

scope of the lifetime of that reference. Thus both the original programmer and the subsequent code reader can assume a
powerful invariance across the scope: this reference refers to some object, and it only refers to that object.

The advantages of using pointers over references include:

Pointers can do and mean many things that references can't --- a pointer can be used to represent such things as:●

an array●

an element of an array●

null (no object passed)●

one past the end of an array (an end marker)
So clearly if you must do one of these things you should be using a pointer. The disadvantage then being that which of N
possible uses of the pointer is intended is not immediately apparent from the code.

●

Pointers (non-constant) can be re-assigned, making them useful in the infrequent case where it would truly be inefficient
or inconvenient to not be able to change the pointers value. The disadvantage then is that the code reader cannot assume
invariance within the scope.

●

Use references where you reasonably can --- that is, when assigning a name to an already existing singular object. Use pointers
for any of the other N meanings that pointers have traditionally held.

11.6 Portability

The advantages of portable code are well known and little appreciated. This section gives some guidelines for writing portable
code, where the definition of portable is a source file that can be compiled and executed on different machines with the only
source change being the inclusion of (possibly different) header files.

Beware of making assumptions about the size of pointers. They are not always the same size as int. Nor are all
pointers always the same size, or freely interchangeable.

●

Also, beware of potential pointer alignment problems. On machines that have address alignment restrictions (for
example, Sparc), the conversion of a pointer-to-char to a pointer-to-int may result in an invalid address.

●

Never assume you can do anything with a NULL pointer except test its value. In particular, code that assumes that
dereferencing a NULL pointer yields '\0' (ala VAX/BSD) will generate memory faults on other machines (for
example, Sparc). Further, never write a class that assumes that this may be validly NULL.

●

Don't assume that longs, floats, doubles, or long doubles can be at any even address.●

Don't assume you know the memory layout of a data type.●

Don't assume you know how a struct or class is laid out in memory, or that it can be written to a data file as is.●

Never assume that the rest of the world uses 7-bit US-ASCII.●

Watch out for signed characters. On some machines, for example, char is sign-extended when used in expressions,
which is not the case on some other machines. Code that assumes either that char is signed or unsigned is
non-portable. It is best to completely avoid using char to hold numbers. Manipulation of characters as if they were
numbers is often non-portable. Explicitly declare character variables as signed or unsigned in cases where it
matters.

●

Bitfields are also signed on some machines and unsigned on others. If you use bitfields in a way that is sensitive to
this difference you must be explicit.

●

On some processors the bits (or bytes) are numbered from right to left within a word. Other machines number the bits
from left to right. Hence any code that depends on the left-right orientation of bits in a word deserves special scrutiny.
Bit fields within structure members will only be portable so long as two separate fields are never concatenated and
treated as a unit.

●

Alignment considerations and loader peculiarities make it very rash to assume that two consecutively declared variables
are together in memory, or that a variable of one type is aligned appropriately to be used as another type.

●

You should not need to know the format of the virtual tables generated by the compiler. These formats may not even be
portable between different versions of the same compiler.

●

If a simple integer, such as a loop counter, is being used where either 16 or 32 bits will do, then use int, since it will
get the most efficient (natural) unit for the current machine. Word size also affects shifts and masks. The statement

●

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (37 of 40) [10/1/2000 6:52:24 PM]

x &= 0177770

will clear only the three right most bits of a 16 bit int on a PDP-11. On a VAX (with 32 bit ints) it will also clear the entire
upper 16 bits. Use

x &= ~07

instead, which works as expected on all machines. The operator | does not have these problems, nor do bit-fields.

The directive #include "somefile.hh" implies different search paths on different systems. On BSD derived
systems it means

●

first look in the directory the build is being done in,1.

then use the -I directory list
while on System V derived systems it means

2.

first look in the directory the current file is in,3.

then the directory the build is being done in,4.

then the -I directory list
Note that the BSD systems don't implicitly look in the directory that contains the source file if that directory isn't the one
where the build is being done.
As an example, assume a directory with the files foo.cc, foo.hh, and the subdirectory obj. Also assume that
foo.cc does an #include "foo.hh". The command

5.

 CC -c -o obj/foo.o foo.cc

will work on both systems, but

 cd obj

 CC -c -o foo.o ../foo.cc

will fail to find foo.hh on many BSD based systems.

Some things are inherently non-portable. Examples include code to deal with particular hardware registers such as the
program status word, and code that is designed to support a particular piece of hardware such as a device driver. Even in
these cases there are many routines and data structures that can be made machine-independent. Source files should be
organized so that the machine-independent code and the machine-dependent code are in separate files. Then if the
program is to be moved to a new machine, it is a much easier task to determine what needs to be changed.

●

12 Interaction with C

12.1 ANSI-C/C++ include files:

This is the list of the header files that ANSI-C (and thus C++) requires be provided by the language implementation. Use of
any other "system" header file may not be portable.

Uses of these C header files are not required to be bracketed with the extern "C" { } construct.

#include <stddef.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <locale.h>
#include <ctype.h>
#include <string.h>
#include <time.h>
#include <limits.h>

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (38 of 40) [10/1/2000 6:52:24 PM]

#include <errno.h>
#include <assert.h>
#include <signal.h>
#include <setjmp.h>
#include <math.h>
#include <float.h>

12.2 Including C++ Header Files in C programs

Header files that must be included by both C and C++ source have slightly different rules than do C++-only header files.

The files are named headerfile.h instead of C++'s headerfile.hh●

All C++ keywords must be avoided. The C++ keywords that are not in C are: asm,
catch, class, delete, friend, inline, new, operator, private, protected, public, template,
this, throw, try, virtual.

●

Comments must use C's /* */, not C++'s //.●

Functions that take no parameters must use (void), not just ().●

Function prototypes must always be provided.●

This project has no interest in any non-ANSI-C dialects of the C language.

The C language mapping for identifiers must be preserved (See Template for
Shared C and C++ Header Files on page 44).

●

12.3 Including C Header Files in C++

The inclusion of every non-C++ header file must be surrounded by the extern "C" { }
construct.

Note that the header files enumerated above (ANSI-C/C++ include files:, § 12.1) are considered C++ header files, and not
subject to this rule.

extern "C" {
#include <somefile.h>
#include <otherfile.h>
}

12.4 C Code calling C++ Libraries

Function calls that are intended to be called from C that take input-only struct arguments may wish to use pointers, since C
does not have references. Such pointers must, of course, be declared const.

In order to be able to export a C++ library to C users, you'd like to let the C users link to the library using the regular C/Unix
linker.

The CC linker (also called the "C++ pre-linker" or "patch" or "munch") is the part of the C++ system that makes static
constructors and static destructors work. These are the routines that get called if you have a global (or a local static) variable
whose class has a constructor. The C++ pre-linker paws through your object files looking for the right pattern of mangled
name that indicates constructors and/or destructors that need to be called for that file, puts them all together into an
initialization routine named _main(), and links that synthesized _main() into your program. Cfront has inserted a call to
_main() at the start of your main C++ program.

So, on SunOS 4.x, if your library has any global, file-static or local-static variables whose classes have constructors or
destructors, you must use the CC command to link any application to that library.

SunOS 5.0 object files allow libraries to have a .init section that gets called to initialize the library. The constructors would
be put into this section (and not _main()), thus avoiding the linking problems mentioned above.

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (39 of 40) [10/1/2000 6:52:24 PM]

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF16551
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style-endmatter.html#REF16551

Footnotes

(1)

The real, legal copyright text is still being created. It will be much longer and wordier than that which is shown here. A
tool exists that allows us to simply put a comment containing the word "Copyright" somewhere in it at the beginning of
the file and have the correct current copyright notice inserted automatically at a later date.

(2)

Hungarian notation is that style that has a identifier modifier (either suffix or prefix) for every potentially interesting fact
about that identifier, for example, a "P" suffix for pointer, "l" prefix for local, "i" prefix for an int, "a" suffix for arrays,
so each identifier can look something like liindexaP.

(3)

This does not apply to names used in libraries or generated by utilities.

(4)

Lining up the initializations, as shown in the examples, is a matter of personal preference.

(5)

As soon as exceptions are available in the compilers we use, this restriction will be revisited.

Chris "at" lott.com archived this page.

Wildfire C++ Programming Style

http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html (40 of 40) [10/1/2000 6:52:24 PM]

	umd.edu
	Wildfire C++ Programming Style

