C++ Programming Style Sheet

Programming Style Tips

Software developers should write code that is:

O

O

O

O

O

Reliable

Easy to understand

Robust (considers all contingencies)
Easy for other developers to use
Easy to maintain and update

Coding standards and guidelines help to achieve these goals.

Many of the following standards and guidelines are derived from the reference books C++ Programming Guidelines and
Effective C++.

General

C++ programs should be written in a straightforward manner. Good programmers strive for simple, easy-to-read,
and understandable code. Avoid bizarre or overly cute usages.

Use a named constant instead of a constant value (or so called magic number) to make programs clearer and
easier to modify. For example, confusion may result if the constant 20 is used to represent multiple entities (e.g.,
the number of user inputs and some unrelated maximum limit). Also, if the number of user inputs changes, to say
30, only the constant variable need be changed.

Each function should perform a single, well-defined task.

Replace repetitive statements by calls to a common function whenever the function-call overhead is not too costly
in terms of efficiency. This will improve readability and maintainability (easier to find bugs, make changes, etc.) of
the code.

In general, opt to pass modifiable arguments by reference, small non-modifiable arguments by value, and large
non-modifiable arguments by using references to constants. This balances performance and clarity since
call-by-reference exposes an argument to corruption and the copying involved in call-by-value of large objects can
degrade performance. That is, for passing large objects, use a constant reference parameter to simulate the
security of call-by-value and the efficiency of call-by-reference.

To avoid errors caused by the multiple inclusion of a header file, use the name of the header file with the period
replaced by an underscore in the #ifndef and #define preprocessor directives of the header file.

Documentation/Commenting

O

Your program should be self-documenting; that is, a listing of your source code should provide the key information
in English, such that the information will help others (and often yourself!) understand your program.

Each file should begin with a comment section giving the name of the file, the author's name, the date the file was
last modified, and a description of its purpose. In addition, it is also consider good programming practice to include
any assumptions you have made (such as assumptions about reasonable input) and any error-checking that has
been provided. For example,
/ *

filenane: make_change. cp

author: L. Stauffer
date last nodified: 8/17/98

This program accepts a dollar anmpbunt specified by the user and di splays the m ni num nunber of
$10, $5, and $1 bills required to nake up the anount.
*/

http://www.cs.sonoma.edu/~stauffer/254F00/C++Style.html (1 of 5) [10/1/2000 7:31:26 PM]

C++ Programming Style Sheet

o Each function prototype and function definition should be fully commented. The comments should include a
summary of what the function does, preconditions (conditions assumed when the function is called) and
postconditions (describing the effect of the function call). For example, consider the function prototype
fahrenheit_to_celsius:
doubl e fahrenheit_to_cel sius(double F);

/'l Receives a Fahrenheit tenperature F. Converts F to Celsius and returns the result.
/1l Precondition: Fis a tenperature expressed in degrees Fahrenheit.
/1 Postcondition: Equivalent tenperature of F in degrees Celsius is returned.

o Insert comments in your program. A comment should appear after each declaration and after a statement to

provide information which is not obvious. For example:

int total _cost, itemcount; /ltotal cost of item.count purchases
doubl e average_cost; [l average cost of an item to be conputed

You may also use a comment to precede a block of code:
[l performlinear search of costs array for a matching val ue

< SI ZE && costs[i] != search_val)

int i 0;
i
i ++:

\mne(:'

Formatting

o Group related code together.

o Use consistent and reasonable indentation conventions throughout your program to improve program readability.
Avoid using several spaces for an indent - instead use a tab. If there are several levels of indentation, each level
should be indented the same additional amount of space.

o Indent the body of a control statement (if else, switch, for, while, do while) to emphasize structure and enhance
readability.

o Place braces {} to emphasize program structure. There are two notable styles of brace placement. The first is to
place each brace on a separate line (the book follows this style). The second places the opening brace at the end
of the line just before the start of the braced section. The following code piece illustrates these two styles:

Preferred style:
if (x> MAX)

{
cout << "x is larger\n";
X = NMAX;

}

el se

{ .
cout << "x is smaller\n";
X = 0;

}

Alternative style:

if (x > MAX) {
cout << "x is larger\n";

X = MAX;

el se {
cout << "x is smaller\n";
X = 0;

}

o Nested if statements tend to quickly migrate to the right following a simple indent each control structure approach. If
you have a situation which requires multiple nested if statements, instead of doing:

if (dayO\Week == 1)
/] do this;
el se

if (dayOrWeek == 2)

http://www.cs.sonoma.edu/~stauffer/254F00/C++Style.html (2 of 5) [10/1/2000 7:31:26 PM]

C++ Programming Style Sheet

/1 do that;
el se

if (dayOfWeek == 3)
/1 do sonething el se;
etc...

Do this instead:
if (dayOh\Week == 1)

// do this;

else if (dayOr\Wek == 2)
// do that;

else if (dayOrWek ==)

/1 do sonething el se;

Or, use a switch statement. Either will save space and be easier to read, while producing the same results as the
nested ifs.

o Indent the entire body of each function one level of indentation within the braces that define the function body.

o Add white space (i.e., blank lines and or spaces) to improve readability. In general:

= Use one blank line to separate logical chunks of code. Avoid using more than one blank line.

= Always place a blank line before a declaration that appears between executable statements. If you prefer to
place declarations at the beginning of a function, separate them from the executable statements with a blank
light. This highlights where declarations end and executable statements begin.

= Put a blank line before and after each control structure.
» Place a space after each comma (,) to make programs more readable.

= Place a space on either side of a binary operator. This makes the operator stand out and the program easier
to read.

= Here is an example:

voi d AddNunbers(doubl e, double);
voi d Mul t Nunmbers(doubl e, double);
voi d Qut OpenMessage();

char | nConmmand() ;

-space here

-space here

int main()

doubl e firstDouble = 4.2;
doubl e secondDoubl e = 6. 5;
char conmand;
bool valid = fal se;
-space here
-space here
Qut OpenMessage(); // outputs opening screen nessage
-space here
do
{
comrand = I nCommand(); //returns user input conmmand
-space here
swi tch(toupper(conmand))
{
case 'A':
AddNunbers(firstDouble, secondDouble); //outputs sum
valid = true;
br eak;
-space here
case 'M:
Mul t Nunber s(firstDoubl e, secondDouble); //outputs product

http://www.cs.sonoma.edu/~stauffer/254F00/C++Style.html (3 of 5) [10/1/2000 7:31:26 PM]

C++ Programming Style Sheet

valid = true;
br eak;
-space here
defaul t:
cout << "Input error" << endl;

}
} while(!'valid);
-space here
return O;

}

-space here
-space here
voi d AddNurbers(double first, double second)

{
doubl e sum

-space here
sum = first + second;
cout << first << " + " << second << " =" << sum << endl;

}

o Declare each variable on a separate line. This format allows for placing a descriptive comment next to each
declaration.

Global vs. Local Variables

o Declare variables to be local to the function(s) in which they are used. Global variables and constants are
counter-productive to the goal of encapsulation. Also, a global variables runs the risk of being inadvertently altered
in a function in which it is not meant to be used.

o Place named constants as local as possible (this contradicts the advice given on page 143 of our text). When then
should a constant be made global? There is no hard and fast rule to apply here. Judge the use of the constant - if it
is used in many functions throughout the program (e.g. the tax rate in an accounting program) then it makes sense
to declare the constant globally at the beginning of the file.

o Do not use global variables to get around the need to pass parameters.

Code Efficiency

o A nested if/else statement can be much faster than a series of non-nested if statements because of the possibility
that an early if condition is satisfied.

Naming

o Use meaningful and descriptive identifiers for variable, function, class, constant and parameter names. This can
make a program easier to understand.

= Use all uppercase letters, with underscores, for #ifndef/#define/#endif and const identifier names. For
example:

#i f ndef TI MEFI LE_H
#define TI MEFI LE_H
const int MAX LENGTH = 10;

= For all other identifier names, use either one of the mixed-case conventions for multiple words or all
lower-case letters, with underscores.

Fi nal Score
final Score
final _score

= Boolean variables (those that evaluate to true or false) should be named so that they state the affirmative
action. For example:

bool notValid; // Avoid this
bool valid; // Use this affirmative forminstead

http://www.cs.sonoma.edu/~stauffer/254F00/C++Style.html (4 of 5) [10/1/2000 7:31:26 PM]

C++ Programming Style Sheet

If variables are named to assert the negative, then somewhere code will end up looking like this:
if(!'notvalid) // Double negative is confusing

= Be consistent with your naming scheme.

= Avoid using the same names for the arguments in a function call and the corresponding parameters in the
function definition. This reduces ambiguity.

Classes
o It's considered better style to list all the public members of a class first in one group and then list all the private

members in another group. This tends to focus the attention of the user of the class on the public interface rather
than on the inaccessible implementation.

o Every class should have a constructor to ensure that every object is initialized to a well-defined state.

o Declare as const all member functions that do not need to modify the current object so that you can use them on a
const object if necessary.

Prepared by Lynn Stauffer and Karen Petersen, 1999

http://www.cs.sonoma.edu/~stauffer/254F00/C++Style.html (5 of 5) [10/1/2000 7:31:26 PM]

	sonoma.edu
	C++ Programming Style Sheet

