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1 Some fweb preliminaries

This program is written to run under the Cray cft77 and the usual compilers for SUN s. This is controlled
by the macros CRAY and SUN . It should be straightforward to accomodate other environments such as
VAX VMS and . . .

The code creates one large file in its current form. The source can be modified to defeat the two WEB

includes. The includes are placed just before the last few modules that are the ones most likely to be
changed with each application. This is done to place that code next to the index. There are companion
files, ps subs.web and gjrwls.web which also input the included files if the user wishes to keep their listings
separately.

The ftangle command line to produce CRAY code needs two parts that are not defaults: -m"CRAY" -d.
The -d converts do/end do constructions into labeled do loops. Cray, like everybody else, has extended
their compiler beyond the standard, but they omitted this logical extension.

We start each Fortran module with a command that defeats default typing of variable names. Fortran
compilers need default variable types (preferably a command line option) for compatibility with old code.

Another macro, floating, enables 64 bit precision in all the environments. The Cray uses 64 bit precision
for real variables by default. The other machines will use this when real∗8 is specified. The actual storage
may vary among machines. The macro, const , is used to convert floating point constants by appending the
“d0” exponent on 32-bit machines.

The canonical form of this is kept on an IBM RISC SYSTEM/6000 and is compiled using the xlf compiler.
This is considered stable in its current form and future changes will be to rewrite it using Fortran 90. The
current version of xlf will be the basis of port.

"psq.f" 1 ≡
@#if defined (CRAY )

@m CRAY 1
@m SUN 0

@#else
@m CRAY 0
@m SUN 1

@#endif

@f floating real
@#if CRAY

@m floating real
@m const (x) x

@#else
@m floating real∗8
@m const (x) x##d0

@#endif
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2 Nonlinear Multipoint Boundary Value Problems

The nonlinear multipoint boundary value problem and the method of solution used in this code are
described in reasonable detail in the companion users guide. A short statement of the problem is repeated
for the reader’s convenience.

The following problem is offered as a sample problem of the type Ps Quasi is intended to solve. It is a
model of a spring mass dashpot, electrical circuit, or other physical systems. This is a linear problem if the
parameters are known.

ẍ + µẋ + ξx = λsin(t)

The constants µ, ξ, and λ are unknown and their estimation is a primary goal. We realize that these
parameters will not be a linear function of data like:

ti 1.0 2.0 3.0 4.0 5.0 6.0 · · · 15.
ẍ(ti) -0.220 0.035 -0.474 -0.589 0.393 1.597 · · · -2.816

The values of x(0) and ẋ(0)) are also not linearly dependent upon the data.

One might consider this to be Regression Analysis where the model is a differential equation. A word of
caution is that the results cannot be viewed in the same manner as the usual Regression Analysis. In these
problems we generally have significant detailed knowledge of the model. The model (the ODEs) usually
is based upon a sound theoretical or scientific analysis. The usual regression analysis is based on knowing
nothing about the model and considering means of (hyper)planar models.

The linear multipoint boundary value problem is to find the solution of the differential equation:

ẏ = Ly + f or ẏ = g(y, t)

subject to the m boundary conditions:

qi(y(ti)) = bi, for i = 1, 2, ...,m

where:

y is the state vector of n elements,
L is a linear operator that is a variable or constant coefficient matrix,
t is the independent variable, often time.
f is an n element vector function of the independent variable t, and
(.) denotes differentiation with respect to t.
qi is an operator that defines a linear combination of the elements of the state vector, y, that is equal to the

boundary value bi at t = ti.
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2.1 Superposition methods (also known as shooting methods)

This section is a brief exposition on the superposition of particular solutions which is mathematically
equivalent to the usual superposition methods. In the homogeneous superposition method the solution
of the linear differential equation, ẏ = Ly + f , was expressed as the weighted sum of n linearly independent
homogeneous solutions and a particular solution of this equation. Some recommended sources for discussions
of boundary value problems are Osborne, Fox, and Keller. Many different aspects of a wide range of this
class of problems are discussed in detail.

The solution can also be written as the sum of n+1 particular solutions of the differential equation, given
that a certain condition (or constraint) is met. We write:

y =
n∑

j=0

P(·,j)βj = Pβ

where:

βj are superposition coefficients and
P is a matrix whose jth column is denoted by P(·,j).

The jth column of P is a solution of the ODE:

Ṗ(·,j) = LP(·,j) + f j = 0, 1, 2, . . . , n

We multiply each of these equations by the appropriate superposition coefficient, βj , and sum over the
indicated range which yields:

n∑
j=0

Ṗ(·,j) βj = L
( n∑

j=0

P(·,j) βj

)
+ f

n∑
j=0

(βj)

Comparing this with equation (3) and its derivative with respect to t, we see that:

n∑
j=0

βj ≡ 1
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2.2 Linear independence of the initial value solutions

The equivalent of the nonzero Wronskian for the superposition of particular solutions is:

rank(P ) = n

This is ensured if the initial values of P are appropriately chosen. This is easily done by the following
strategy. Let the initial conditions for P(·,0) be the current best estimate of the initial conditions. Then,
P(·,i) will be the same except for the ith element will be

P(i,i) = P(i,0) + ρi

The only requirement is that each element of ρ 6= 0. It is obvious that the rank(P ) = n because the
subtraction of the 0th column from all other columns of P (t = 0) yields a matrix whose rightmost n columns
form a diagonal matrix whose diagonal elements are ρi. The determinant of this n× n submatrix is

∏n
i=1 ρi

and with the assumption these “perturbations” be non-zero, the rank requirement is satisfied.

2.3 Boundary condition specification

The superposition coefficients for this definition are found by substituting into the boundary conditions. The
system of equations which must be solved to determine the superposition coefficients are:

Cβ = d

where the elements of these arrays are:

C(0,j) = 1 for j = 0, 1, 2, . . . , n

C(i,j) = qi

(
P(·,j)(ti)

)
for
{

i = 1, 2, . . . ,m
j = 0, 1, . . . , n

d0 = 1

di = bi for i = 1, 2, . . . ,m

3 Power Series

The power series is one of the most common and important tools in applied mathematics. It often comes from
the truncated Taylor series. The solution of ordinary differential equations can be expressed in this form.
The usual integration formulae, Runge-Kutta and multistep methods, are based upon the approximation of
a Taylor series.

One disadvantage of the Taylor series as an integrator is that the formal manipulation of these power
series can often be quite complex and require detailed manual preparation. The procedures furnished in this
paper offset this in some cases by giving a process that is more accurate and faster.
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3.1 Recurrence equations

The method of Frobenius is an economical means of calculating these coefficients through the use of recurrence
equations rather than using the repeated differentiation. We will describe various routines which will expedite
some of the formal manipulations necessary to solve a fairly broad subset of the common differential equations.
For the differential equation (1):

ẏ = g(y, t)

we assume that the solution y and the right-hand-side can be expanded in power series. Since y is a vector,
the coefficient of tk is a vector and is denoted by y(·,j). Thus:

y(t) =
∑∞

k=0 y(k,·)t
k (1)

g(t) =
∑∞

k=0 g(k,·)t
k (2)

ẏ(t) =
∑∞

k=0(k + 1)y(k+1,·)t
k (3)

(4)

The upper limit of these summations is theoretically ∞, but the practical use requires these be finite, say
m. Tests of some years ago indicated a value of m = 12 was the best to give economical precision. These
tests should be run again on the most common computers now available. This should use the algorithms
included in this document, be carefully documented, and published.

Substituting the second and third of equations (15) into (14) yields:

m∑
k=0

(k + 1)y(k+1,·)t
k =

m∑
k=0

g(k,·)t
k

This equality requires that coefficients of like powers of t must be equal. Selecting the (k − 1)th term, we
get a Frobenius recurrence:

y(k,·) =
1
k

g(k−1,·)
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3.2 The differential equations, first-order, and linearization

The second order ODE stated in equation (0) can be rewritten as two first order equations:

ẏ1 = y2 (5)
ẏ2 = −ξy1 − µy2 + λ sin(t) (6)

(7)

For these equations, the recurrence (17) can be written:

y(k,1) = (y(k−1,2))/k (8)
y(k,2) = (−ξyk−1,1) − µy(k−1,2) + λsn(k−1))/k (9)

(10)

where sn is the power series representing sin(t) about the current center of expansion.

The recurrence equations for this identification problem are obviously longer. The notation is confusing
at first glance in that some functions are not multiplied by the use of the power series operators. When the
constants µ, ξ, and λ are added to the state vector, they remain constants which means their power series
have only the zero term that is non-trivial. When an element of y is a constant, only its zero term of the
power series will be referenced.

y(k,1) = (y(k−1,2))/k (11)
y(k,2) = (−y4yk−1,1) − y3y(k−1,2) + y5sn(k−1))/k (12)

(13)

Actually, the identification process will require linearized equations which will be based upon the base or
approximate solution, w. The linearized form of the equations are:

ẏ1 = y2 (14)
ẏ2 = w4w1 + w3w2 (15)

−w4y1 − w3y2 − w2y3 − w1y4 + y5 sin(t) (16)
(17)

and the relevant recurrence equations for these linearized equations are:

y(k,1) = (y(k−1,2))/k (18)
y(k,2) = (w4wk−1,1) + w3w(k−1,2) (19)

−w4yk−1,1) − w3y(k−1,2) − wk−1,2)y3 − w(k−1,1)y4 + y5sn(k−1))/k (20)
(21)



§3.3–§4 [#9–#10] Ps Quasi, an ODE BVP Solver The program, Ps Quasi 7
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4 The program, Ps Quasi

The name comes from ‘Power Series’ and quasilinearization which was used by Bellman and Kalaba to denote
an approach to solving nonlinear boundary value problems. They developed the method from a dynamic
programming approach. It is often referred to as a Newton method. It is a Newton-Raphson-Kantorovich
method since most of the Newton expansions are in terms of vectors of functions.

The psuedo-code like view of the program is an eloquent statement of the outline of the program.

"psq.f" 4 ≡
program Ps Quasi

implicit none

〈Quasi’s parameters 4.1.3 〉
〈Quasi’s input variables 4.1.4 〉
〈Quasi’s local variables 4.1.7 〉
〈 Initialization of variables 4.1.10 〉
〈 Input parameters, estimates, and boundary conditions 5.0.1 〉
〈 Iterate on the boundary value problem 4.1 〉
stop

end
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4.1 Iterations, iterations, iterations

The original form of this code did some parts of a “Fisher’s scoring” but not a complete one. The complete
scoring algorithm requires that a line search be performed at the end of each iteration. Without this line
search, there is about 300 lines of code in this iteration part.

I made the decision to reuse most of this code by imbedding a loop with the index scoring and checking
on its value to implement the complete scoring algorithm. When scoring ≡ 0 we do a boundary value
iteration and when scoring ≡ 1 we do a line search iteration. The variable iteration is not updated until the
completition of the line search.

〈 Iterate on the boundary value problem 4.1 〉 ≡
iteration = 0
do while (iteration ≤ iteration max )

do scoring = 0, 1
〈Set up for this iteration 5.1 〉
〈Perform the forward integration 4.1.1 〉
〈End of forward integration 5.6 〉

end do
end do

This code is used in section 4.

Integration of the n ps + 1 different solutions has several scalar parts and some which can be parallelized.
This could pay significant dividends because in an older version of this code it was determined that 93
percent of the CPU utilization was in the forward integration.

〈Perform the forward integration 4.1.1 〉 ≡
do while (¬at end )
〈Set up for current center of expansion 5.2 〉
〈Calculate the power series coefficients, recurrence 5.3 〉
〈Determine the limit of numeric convergence 5.2.2 〉
do while ((¬at limit ) ∧ (¬at end ))
〈Determine τ and advance t 5.4 〉
〈The parallel forward integration parts 4.1.2 〉

end do
end do

This code is used in section 4.1.

These two parts can each proceed in n ps + 1 parallel streams in many problems. Of course, there will
probably be many problems where this is so quick that the communication costs will offset the gains in
parallelization.

〈The parallel forward integration parts 4.1.2 〉 ≡
〈Evaluate the power series 5.4.6 〉
〈Use the result of the evaluation 5.5 〉

This code is used in section 4.1.1.
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In this module, parameter is assumed to have its Fortran meaning, that is a named constant. The
integer names n and m will be central throughout this code. The parameter m will be a constant
and will be the maximum order of the power series that are used. The variable n will be the order of
the differential equation being solved. Notice that the variables n and m have underscores added to their
names. This causes them to be long enough that all references to them will appear in the index. It is a
feature of WEB (and probably a good one) that the use of single character variable names will not appear
in the index except at the definition. It was Don Knuth’s decision that every use of a dummy index would
be too much!

Previous experiments have generally indicated that the value of m should be 12. In the current form we
are assuming that the value of n will be input and will not exceed max n = 8.

The number of boundary conditions, n bc , will have an upper limit of max n bc = 200. There is a related
variable n bc in . This is the total number of boundary conditions input. It normally will be the same as
n bc , but in some cases the user may want to actually use only n bc of the input values. Thus n bc ≤ n bc in .

We also need max n p as a parameter. This is one more than max n and is used for dimension information
in arrays. The speed of today’s compilers makes this a trivial decision.

After this module, the word parameter will have its mathematical meaning. This module is also used in
the included file: the gjrwls.

〈Quasi’s parameters 4.1.3 〉 ≡
integer max n , m , max n bc , max n p , random count , max shoot
parameter (m = 12, max n = 15, max n p = 16, max n bc = 400)
parameter (random count = 1000, max shoot = 2)

This code is used in section 4.

Now for the declarations of the variables already described.

〈Quasi’s input variables 4.1.4 〉 ≡
integer n , n bc in , n bc

See also sections 4.1.5, 4.1.6, 4.1.8, 4.1.13, 4.1.15, 5.0.4, 5.0.5, 5.2.4, and 5.4.7.

This code is used in section 4.
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The variable i debug is important in testing new applications and in the development of the code itself.
This variable will be zero or positive. Positive values will indicate that additional output is to be performed
in some kind of debug or checkout mode.

Since there are many levels of this, it is just easier to use an integer rather than logical and let its level
indicate its use.

The variable iteration max is input. However, its value may be changed if the problem is solved in fewer
iterations.

The variable random shift enables the user to select a different set of random variables. This is discussed
later.

The variable final is set to T whenever gjrwls is called in the final iteration and statistics are to be
calculated.

A function number of fields is included to relax the format of input.

〈Quasi’s input variables 4.1.4 〉 +≡
integer i debug , iteration max , random shift , number of fields
logical final

Each boundary condition consists of several parts. We denote the individual boundary condition as
qi(y(ti)) = bi.

The operator qi defines the function of y at the time ti which should equal the boundary value bi. The
boundary value and time are stored in the arrays bv and t bc .

An integer array q is used to indicate the operator. Most boundary conditions are that an element of y
should equal the boundary value. It is not uncommon that a boundary condition be a measurement on an
element of ẏ. When 1 ≤ qi ≤ n, then the ith boundary condition is on the element of qth

i element of y. If qi

is negative and its absolute value is in the same interval, the boundary condition is on that element of ẏ.

Boundary conditions may be required to be met exactly or in a best fit sense. We will refer to boundary
conditions which are to be met exactly as constraints and those to be met in a best fit sense to be observations.
This specification is indicated by the value of the elements of the array exact bc . A value of one will indicate
a best fit desire. This is stored as an integer array. Larger positive values are used as an indication of
weight.

〈Quasi’s input variables 4.1.4 〉 +≡
floating t bc(1 : max n bc), bv (1 : max n bc)
integer q(1 : max n bc), exact bc(1 : max n bc)
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Again, n is the order of the differential equations. The variable n ps is the maximum index of the solutions
of the differential equations being generated. It has an upper limit of n, but if some initial values are known,
then n ps < n.

We will strive for consistency in the use of variable names, including indices:

i is an index for the different particular solutions which are being superimposed. 0 ≤ i ≤n ps
i bc is an index for the boundary conditions. i bc ≤ n bc + 1. The ‘+1’ happens when the range of the
independent variable exceeds its range that covers the boundary conditions. Thus, it happens only when
‘extrapolating.’ The value of n bc + 1 is not used, only assigned. (We have assumed that n bc ≡ n bc in in
the above discussion.)
j is an index into the dependent variable vector, y, the solutions of the differential equations. 1 ≤ j ≤ n.
The variable jj substitutes for j in some cases.
k is an index into the power series coefficients. 0 ≤ k ≤ m. It is also used as a dummy variable.
iteration is an index of the iterations. iteration≤iteration max
n out is a temporary variable that is used when abbreviated output may be advantageous.
i return is used to check on the status of return flags from subroutines.
scoring is a loop index used to implement a second (sub)iteration for implementation of the line search
required by the method of scoring.
scoring max is the loop range for scoring . It is set to unity and reduced to zero when convergence starts
slowing down. This requires convergence count to be at least two. The thought behind this is that we may
be asking for too much convergence.
convergence count is the number of iterations for which there has been a strong indication of convergence
occurring.
max ivp is a loop limit that will take on values of n ps when doing the BVP or unity when doing the line
search for scoring.

〈Quasi’s local variables 4.1.7 〉 ≡
integer n ps , i, iteration , j, k, i bc , jj , n out , i return
integer scoring , scoring max , max ivp

See also sections 4.1.9, 4.1.11, 4.1.14, 4.1.17, 5.0.9, 5.1.1, and 15.2.

This code is used in section 4.
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These variables are related to the independent variable.

t is the current value of the independent variable,
t center is the value of t at the current center of expansion,
tau is defined by tau = t− t center ,
t limit specifies the maximum value of t that the power series can be expected to give accurate results,
t output should contain the next value of t where regular output is expected, say for creating plot values,
t output delta is the increment of the independent variable for regular output,
t output start is the initial value that output is expected for. It may be set to a large value to supress output.
The program will reset it to t start at the final iteration if it is larger than t stop ,
t external is similar but is for external purposes, and finally
t start and t stop specify the range of t that is of interest.
error norm is used to add errors to the boundary conditions in checking things out.

While determining the value of tau , we will set a flag to aid later handling of updating. Each time we
output at one of these ‘regular points,’ we will increment the value of t output by the value t output delta .
accuracy is set to a value like 10−7 to indicate seven (7) significant decimal digits are desired in the
integrations,
convergence is similar except that it applies to the precision with which the initial values are estimated, and
max beta is the value that will be compared to convergence .
weight is used in weighting the boundary conditions.
K n 0 , K n 1 , and K n 2 are variables that are used in the calculation of the value of line step in the scoring
algorithm.
line step limit is the limiting fraction of the Newton step to take in each iteration. Thus, it is a bound of
line step .

〈Quasi’s input variables 4.1.4 〉 +≡
floating t start , t stop , t output start , t output delta
floating y change max , accuracy , convergence , max beta
floating error norm , weight , K n 0 , K n 1 , K n 2
floating line step , line step limit

These are local scalar variables. Of course, the input variables just declared are also local and scalar, but
those were input while these are assigned values within the code.

There are also several logical variables that we use as flags when checking our whereabouts.

The variable random numbers contains 100 random numbers in the interval of zero to unity. These come in
handy in checking things out. The scalar wasted is appropriately named and used to avoid natting warning
messages.

〈Quasi’s local variables 4.1.7 〉 +≡
floating t, t center , tau
floating t limit , t output , t external , t bc i
logical at limit , at output , at external , at end , at bc
floating random numbers (random count ), normal numbers (random count )
floating wasted
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The random numbers are furnished in a separate file and input rather than using the local random number
generator. This should enable the same results on different machines, nearly.

〈 Initialization of variables 4.1.10 〉 ≡
open (9, file = ’random.numbers’)
read (9, ∗) random numbers
close (9)
open (9, file = ’normal.numbers’)
read (9, ∗) normal numbers
close (9)
do i = 1, random count

if (random numbers (i) ≥ 0.50000) then
normal numbers (i) = −normal numbers (i)

end if
end do

See also sections 4.1.12, 4.1.16, and 15.3.

This code is used in section 4.
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The array t ps is a power series that is a representation of the independent variable t. Thus, most elements
will be zero. The 0th element will be set to the value of the independent variable at the current center of
expansion. The 1st element is set to unity. This array is often used with the functions supplied to produce
the power series that are needed, say the power series that represents sin(t) about the current center of
expansion.

We solve these problems by superposition. We always use only particular solutions. The solution of the
differential equation is

y =
n∑

i=0

P(·,i)βi

We will need arrays for P and its power series.

The variable P is a two dimensional array. It can be considered a vector of vectors. Recall that Fortran
arrrays are column major. Each column of the array, P , is a particular solution of the ODE. The 0th column
is always the solution of the ODE subject to the current best estimate of the initial values. This is referred
to as the ‘base’ or ‘reference’ solution in nonlinear problems.

Many of the problems that we solve with codes like this have need of evaluation of the derivative of the
power series. The two dimensional array DP is used for storing these results.

The three dimensional array, PS , is an expansion of each element of P in a power series. The array β is
the superposition coefficients.

This structure is needed because when we call the routines for manipulating power series, we want them
to see a contiguous set of coefficients.

The vector beta will be the superposition coefficients and the matrix Coef will be the coefficient matrix in
the equation Cβ = d to determine these superposition coefficients. The vector d is not allocated separately,
it is an augmented column of the coefficient matrix Coef when the routine is called that calculates the
superposition coefficients. Upon return from that routine, this column contains the values of β, so it also is
not allocated.

The vectors predicted and observed are used in determining the statistics of the fit.

〈Quasi’s local variables 4.1.7 〉 +≡
floating t ps (0 : m )
floating P (1 : max n , 0 : max n ), DP (1 : max n , 0 : max n )
floating PS (0 : m , 1 : max n , 0 : max n )
floating C(0 : max n bc , 0 : max n p)
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We must initialize the power series t ps . Again, it represents t and when the center of expansion moves,
the 0th coefficient will change to the center.

There are several lines of this module are wasted . They are present to supress a few compiler warnings.
Because these lines may change the array t ps , it is re-initialized after we have avoided the compiler warnings
by those wasted statements.

〈 Initialization of variables 4.1.10 〉 +≡
do k = 0, m

t ps (k) = const (0.0)
end do
t ps (1) = const (1.0)
t ps (0) = const (1.0)
wasted = ps sqr (t ps , 0)
wasted = ps mult (t ps , t ps , 0)
wasted = ps sqrt (t ps , 0, t ps )
wasted = ps div (t ps , t ps , 0, t ps )
wasted = ps exp(t ps , 0, t ps )
wasted = ps pwr (t ps , const (1.0), 0, t ps )
do k = 0, m

t ps (k) = const (0.0)
end do
t ps (1) = const (1.0)

The best estimate of the initial values are input into y input . This is saved to be used in comparing the
final results and initial estimates. Each initial value is also accompanied by data fields exact iv , min iv , and
max iv .

exact iv is an integer array. Negative values indicate the initial value is exact and not allowed to change.
Zero values indicate the initial value is to be estimated and there are no bounds to its value. Positive values
indicate the value is to be constrained between the values of min iv and max iv .

min iv and max iv are limits to the calculated estimates of initial values. It is expected that these will
normally be a very small positive and very large positive value for parameters such as mass, damping
coefficients, . . . where negative values would be physically impossible.

〈Quasi’s input variables 4.1.4 〉 +≡
floating y input (1 : max n ), min iv (1 : max n ), max iv (1 : max n )
integer exact iv (1 : max n )
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In linear problems, the results should be available in one iteration. In those cases we really don’t need to
save the initial values. In nonlinear problems, we save the initial values for the current iteration. This is
used to calculate the initial values for the next iteration.

It is also convenient to save the perturbations of the initial conditions. We could have repeated the
algorithm for calculating the perturbation s, it is just easier to store them when we calculate them. These
are used when we perform the superposition to calculate the initial values for the next iteration. The array
perturbation was denoted by ρ in the module 4.

The variable i r is used in adding noise to the boundary values.

The variables i 0 , i 1 , and i 2 are convenient little scratch variables that are used at least once, maybe
more.

〈Quasi’s local variables 4.1.7 〉 +≡
floating y initial (1 : max n , 0 : max shoot )
floating perturbation (1 : max n , 0 : max shoot )
floating y change (1 : max n ), y change norm
integer i r , i 0 , i 1 , i 2

The formats are used to make the output more readable.

〈Quasi’s input variables 4.1.4 〉 +≡
character output flag∗6
character format t y∗32, format t 0 ∗32, format C ∗32
character format bc∗32, format iv ∗32, format a∗32

Give values to the formats. The output of the ‘solutions’ is done in a ‘hanging indent’ manner through
the use of tab, T, positional editing and imbedded parentheses.

〈 Initialization of variables 4.1.10 〉 +≡
output flag = ’    > ’
format t y = ’(6X,F6.2,(T14,6G12.5))’
format t 0 = ’( A,F6.2,(T14,6G12.5))’
format a = ’(A)’
format C = ’(1X,6G14.7/(3X,6G14.7))’
format bc = ’(1X,2I5,1X,2G12.5,I5)’
format iv = ’(1X,2I5,1X,3G12.5)’

There are a number of variables that are needed. The types of the functions that are defined in the file
the subs.hweb, a separate WEB, must be declared. We also declare the built-in functions that are likely to
be used in this program.

〈Quasi’s local variables 4.1.7 〉 +≡
floating ps sqr , ps sqrt , ps mult , ps div , ps exp , ps pwr
floating log , abs , exp , min
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5 The input routines

This is still in a rather primitive form. This code should have a companion code that also inputs this data
and does extensive analysis of it to ensure that it is consistent.

This module serves to delimit the different types of input that the code needs. The last module referenced
is used to reduce the order of the problem, if possible, based upon the nature of the data.

〈 Input parameters, estimates, and boundary conditions 5.0.1 〉 ≡
〈 Input alphanumeric information 5.0.2 〉
〈 Input integer parameters 5.0.3 〉
〈 Input real parameters 5.0.6 〉
〈 Input boundary conditions 5.0.7 〉
〈 Input initial value estimates 5.0.10 〉
〈 Input formats 5.0.11 〉
〈Reduce the order of the problem, if possible 5.0.12 〉

This code is used in section 4.

This is simply a set of records that will be output at each reasonable opportunity. Obviously, we would
output it at the beginning of each iteration to identify the output.

〈 Input alphanumeric information 5.0.2 〉 ≡

This code is used in section 5.0.1.
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The first value that should be input is obviously n. Actually we will calculate it. This code is primarily
designed for the parameter estimation problem. We might have a second order ODE with two unknown
parameters. This makes the order of the problem four. We will input values for n ode and n parameters .
The sum of these quantities is the value of n for this problem. The other variables input in this module have
been declared and described.

〈 Input integer parameters 5.0.3 〉 ≡
open (9, file = ’data_quasi’)
read (9, ∗) n ode , n parameters
n = n ode + n parameters
n ps = n
write (∗, ∗) ’ n_ , n_ode, n_parameters = ’, n , n ode , n parameters
read (9, ’(a)’) scratch
i = number of fields (scratch )
if (i ≡ 1) then

read (scratch , ∗) n bc in
n bc = n bc in

else if (i ≡ 2) then
read (scratch , ∗) n bc in , n bc

else
write (∗, ∗) ’Error inputting n_bc .. ’ ‖ scratch (1 : 40)

end if
read (9, ∗) iteration max
read (9, ∗) i debug
read (9, ∗) random shift
read (9, format a ) scratch
write (∗, ∗) n bc in , n bc , iteration max , ’ n_bc_in, n_bc, max_iter’
write (∗, ∗) i debug , ’ debug level’

This code is used in section 5.0.1.

We need to declare those parameters we just input.

〈Quasi’s input variables 4.1.4 〉 +≡
integer n ode , n parameters

We also declare two scratch variables. These receive values during input and are then discarded. Future
revisions may make extensive use of the temporary input of alphanumeric strings.

〈Quasi’s input variables 4.1.4 〉 +≡
integer i s
character scratch∗80
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The real parameters need input as well. These have already been declared and described.

〈 Input real parameters 5.0.6 〉 ≡
read (9, ∗) t start
read (9, ∗) t stop
read (9, ∗) t output start
read (9, ∗) t output delta
read (9, ∗) y change max
read (9, ’(a)’) scratch
i = number of fields (scratch )
if (i ≡ 1) then

read (scratch , ∗) error norm
line step limit = 0.0

else if (i ≡ 2) then
read (scratch , ∗) error norm , line step limit

else
write (∗, ∗) ’Error inputting error_norm, line_step_limit .. ’ ‖ scratch (1 : 40)

end if
read (9, ∗) convergence
read (9, ∗) accuracy
read (9, format a ) scratch
write (∗, ∗) ’ t start and stop ’, t start , t stop
write (∗, ∗) ’ output start, incr ’, t output start , t output delta
write (∗, ∗) ’ max IV change norm ’, y change max
write (∗, ∗) ’ Norm of the errors added to BVs ’, error norm
if (line step limit > 0.0) then

write (∗, ∗) ’ Limit on line step’, line step limit
end if
write (∗, ∗) ’ accuracy of integration, IV convergence ’, accuracy , convergence
weight = const (2.0)

This code is used in section 5.0.1.
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This is a fairly simple loop with an echo of the data. We also count the number of boundary conditions
which are to be met exactly. Finally, we make sure that t stop is at least as big as the largest t bc .

〈 Input boundary conditions 5.0.7 〉 ≡
count exact bv s = 0
write (∗, ∗) ’ The boundary conditions are:’
write (∗, ∗) ’     i     q   t           b          exact?’
do i bc = 1, n bc in

read (9, ∗) i s , q(i bc), t bc(i bc), bv (i bc), exact bc(i bc)
if (i debug > 2) then

write (∗, format bc) i bc , q(i bc), t bc(i bc), bv (i bc), exact bc(i bc)
end if
if (exact bc(i bc) ≡ 0) then

count exact bv s = count exact bv s + 1
end if

end do
read (9, format a ) scratch

See also section 5.0.8.

This code is used in section 5.0.1.

If error norm has a value greater than zero, we add noise to the boundary values. These changed boundary
values are also output again. This gives a simple way to test the code. We add noise by adding a random
number shifted to the interval of [-0.5–0.5] times error norm to the boundary value.

Then, we make sure that t stop is at least as big as the largest t bc .

〈 Input boundary conditions 5.0.7 〉 +≡
if (error norm > const (0.0)) then

write (∗, ∗) ’ The corrupted boundary conditions are:’
write (∗, ∗) ’     i     q   t           b          exact?’
i r = random shift
do i bc = 1, n bc

i r = i r + 1
if (i r > random count )

i r = 1
bv (i bc) = bv (i bc) + error norm ∗ normal numbers (i r )
write (∗, format bc) i bc , q(i bc), t bc(i bc), bv (i bc), exact bc(i bc)

end do
end if
if (n bc > 0) then

if (t bc(n bc) > t stop) then
t stop = t bc(n bc)
write (∗, ∗) ’ t start and stop ’, t start , t stop

end if
end if



§5.0.9–§5.0.12 [#38–#41] Ps Quasi, an ODE BVP Solver The input routines 21

The processing of boundary conditions that are to be met exactly and in a least squares sense requires a
little more overhead. The routine which solves a constrained least squares system will require that the exact
equations are stored in the first few rows of the coefficient matrix. The count exact bv s is used to indicate
that count.

〈Quasi’s local variables 4.1.7 〉 +≡
integer count exact bv s

We similarly read and echo the estimates of the initial values. After the values are input, we copy them
into y initial which is used in the calculations.

〈 Input initial value estimates 5.0.10 〉 ≡
do j = 1, n

read (9, ∗) i s , exact iv (j), y input (j), min iv (j), max iv (j)
end do
write (∗, ∗) ’ The initial values are:’
write (∗, ∗) ’     i exact?   y             min         max’
do j = 1, n

write (∗, format iv ) j, exact iv (j), y input (j), min iv (j), max iv (j)
y initial (j, 0) = y input (j)

end do
read (9, format a ) scratch

This code is used in section 5.0.1.

The usefulness of a computer program can be affected in a most significant way by the formatting of the
output. The user must be able to change this by input.

〈 Input formats 5.0.11 〉 ≡

This code is used in section 5.0.1.

It is obvious that the number of independent particular solutions that are needed is reduced if some of the
initial values are known. The limiting case is that of the initial value problem where all the initial values are
known. In that case, n ps will be zero. Remember that this is the maximum index of particular solutions
or the number of additional particular solutions needed to meet the boundary conditions.

The calculation of n ps is a straightforward count of the elements of exact iv with non-negative values.

〈Reduce the order of the problem, if possible 5.0.12 〉 ≡
n ps = 0
do j = 1, n

if (exact iv (j) ≥ 0) then
n ps = n ps + 1

end if
end do

This code is used in section 5.0.1.
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5.1 Set up each iteration

The independent variable obviously must be set for each iteration. This is not the only overhead of an
iteration. The pointer to boundary conditions, i bc , the variable indicating the value of t where output is
desired, and the matrix where the superposition equations are stored must also be initialized. Two additional
variables are needed because each boundary condition may be stored in different sections of the coefficient
matrix. The value of i bc constraint points to the next row for storing an exact equation or constraint. The
value of i bc observation points to the next row for storing an observation or boundary condition that is to
be met in a least squares sense. The value of i bc row will be assigned one of those values when the functions
of the solution are stored.

〈Set up for this iteration 5.1 〉 ≡
t = t start
t output = t output start
i bc = 1
i bc constraint = 1
i bc observation = count exact bv s + 1
〈Check to see if this is last boundary condition 5.1.2 〉
if (scoring ≡ 0) then

max ivp = n ps
〈Perturb the initial value to ensure independence? 5.1.4 〉

else
max ivp = 1
〈Set initial values for scoring integrations 5.1.5 〉

end if
〈Store the superposition identity in C 5.1.3 〉
〈Debug output? Initial values 5.8 〉

This code is used in section 4.1.

We need to delcare the integer variables described above that are used in storing constraints and/or
observations.

〈Quasi’s local variables 4.1.7 〉 +≡
integer i bc constraint , i bc observation , i bc row

When we have processed the last boundary condition, we set t bc i to a very large value.

〈Check to see if this is last boundary condition 5.1.2 〉 ≡
if (i bc ≤ n bc) then

t bc i = t bc(i bc)
else

t bc i = 1.0 · 1033D
end if

This code is used in sections 5.1 and 5.5.5.
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The first row of C (and d which is in C) must be initialized to reflect the identity that the sum of the
superposition coefficients must be unity. These are equations (6) in module 2.

〈Store the superposition identity in C 5.1.3 〉 ≡
do i = 0, max ivp

C(0, i) = const (1.0)
end do
C(0, max ivp + 1) = const (1.0)

This code is used in section 5.1.

After we input the initial values, we copied them into y initial . We did not destroy y input because
we may want to compare the final initial values with the original estimates. When we are iterating on a
nonlinear problem, the new estimates of the initial values will be in y initial .

The 0th column of P is the current best estimate of the solution. The 1st column is defined by the first
element of y that is not known at t start being perturbed. This is repeated until each of the unknown
elements of y have been “perturbed” to ensure linear independence of the solutions.

〈Perturb the initial value to ensure independence? 5.1.4 〉 ≡
jj = 0
do i = 0, max ivp

do j = 1, n
P (j, i) = y initial (j, 0)

end do
if (i > 0) then

jj = jj + 1
do while ((exact iv (jj ) < 0) ∧ (jj < n ))

jj = jj + 1
end do
〈Perturb the jj th element of this column 5.1.6 〉
perturbation (jj , 0) = P (jj , i)− P (jj , 0)

end if
end do

This code is used in section 5.1.
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After we have calculated a new estimate of the initial values, we perform a line search as required by the
scoring method. If we denote these new initial values by y(0) and the change by δ, then we will integrate
the nonlinear equations with initial values of y(0) and y(0) + δ. The third point necessary for a line search
comes from integration with initial values y(0)− δ which was the initial values from the previous iteration.
Those values were saved.

〈Set initial values for scoring integrations 5.1.5 〉 ≡
do j = 1, n

P (j, 0) = y initial (j, 0)
if (exact iv (j) ≥ 0) then

P (j, 1) = y initial (j, 0) + y change (j)
else

P (j, 1) = y initial (j, 0)
end if

end do

This code is used in section 5.1.

We may have skipped over some elements of the initial values that are known. This element is unknown,
so we perturb it to ensure that we have linear independence of the columns of P . If the current estimate of
this element is not small, then we just multiply it by const (1.2) which seems like a good number. After all,
Don Knuth used it as the magnification step in TEX. If the initial value is less than some small value, then
we arbitrarily replace it with another value. In some cases, this heuristic may be a bit too simple.

〈Perturb the jj th element of this column 5.1.6 〉 ≡
if (abs (y initial (jj , 0)) ≥ const (0.1)) then

P (jj , i) = 1.2 ∗ y initial (jj , 0)
else

P (jj , i) = const (0.12)
end if

This code is used in section 5.1.4.
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5.2 Set up for the current center

The center of expansion is assigned the value of the independent variable and the current solution is copied
into the 0th elements of the power series. We also reset a few variables.

〈Set up for current center of expansion 5.2 〉 ≡
t center = t
do i = 0, max ivp

do j = 1, n
PS (0, j, i) = P (j, i)

end do
end do
at output = F
at limit = F
at external = F
at end = F
at bc = F

See also sections 5.2.1 and 15.4.

This code is used in section 4.1.1.

The 0th element of the array t ps is always set to the current center of expansion. The value of t center
that was set in the previous module.

〈Set up for current center of expansion 5.2 〉 +≡
t ps (0) = t center

For now, let’s ignore the externals. If we have some real externals, this is where special handling would
be programmed. Two examples of these will be discussed briefly. It is assumed that these may require the
knowledge of the power series.

The occassional user may have a forcing function that is modeled as a step function. The power series
will be piecewise continuous and must be re-evaluated at the discontinuities in the forcing function. The
user would set the value of t external to be at the next discontinuity. It a later module, the value of t limit
would have to be set to t external if t external < t limit .

Another example comes from problems involving quadratic damping. This should be coded as abs(ẋ)ẋ in
oscillatory problems. Thus, after the series is known, the value of t external is determined to be the next
zero crossing of the function. Again, this may require comparison with and adjusting of t limit .

〈Determine the limit of numeric convergence 5.2.2 〉 ≡
t external = 1.0 · 1033D

See also section 5.2.3.

This code is used in section 4.1.1.
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To determine the max range of numeric confidence of the power series, we will look only at the first one.
Before we do that, we make a little effort to avoid zero coefficients. We only check the base solution, P(·,0),
because all other solutions are purturbations and are used to change the initial values of the base. Since
they are corrections, usually only the first few digits are really needed precisely.

The algorithm is to determine the maximum value of τ that satisfies the condition of abs(amτm) ≤
abs(a0). We include two loops to ensure that the coefficients used in the calculation are non-zero.

〈Determine the limit of numeric convergence 5.2.2 〉 +≡
k 0 = 0
k m = m
do while ((PS (k 0 , 1, 0) ≡ const (0.0)) ∧ (k 0 < m ))

k 0 = k 0 + 1
end do
do while (PS (k m , 1, 0) ≡ const (0.0) ∧ (k m > k 0 ))

k m = k m − 1
end do
if (k m > k 0 + (m / 2)) then

tau ok = abs (accuracy ∗ PS (k 0 , 1, 0) / PS (k m , 1, 0))
tau ok = exp (log (tau ok ) / float (k m − k 0 ))
if (tau ok < const (0.1)) then

tau ok = const (0.1)
end if

else
tau ok = const (0.05)

end if
t limit = t center + tau ok

We used several temporary variables there.

〈Quasi’s input variables 4.1.4 〉 +≡
floating tau ok
integer k 0 , k m

5.3 The initial elements have been established using the initial conditions

Now, we use the Frobenius recurrence equations to calculate the rest of the terms. In some nonlinear
problems, the first part is necessarily the base solution and then max ivp solutions can be calculated in
parallel.

〈Calculate the power series coefficients, recurrence 5.3 〉 ≡
do i = 0, max ivp

do k = 1, m
〈Calculate the k-th term of the power series 15 〉

end do
end do
〈Debug output? Power series coefficients 5.8.1 〉

This code is used in section 4.1.1.
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5.4 Move forward using this power series

There are at least five reasons to set the point of evaluation of the power series. These include:

1. The numeric convergence of the power series specifies t limit . At this point, the power series will
need to be re-expanded.

2. Many problems require a regular output. This may be done to give results for graphical output. In
some cases the user may wish to generalize or change this. For example, this output may be directed
to a file for graphical use.

3. External requirements may specify a point of output. One example is that there may be
discontinuities in the model.

4. Whenever a boundary condition is encountered, some work must be done with the solution.

5. Output should be performed at the final value of the independent variable, t stop .

〈Determine τ and advance t 5.4 〉 ≡
t = min (t output , t limit , t external , t bc i , t stop)
〈Are we at the limit of accuracy of the power series 5.4.1 〉
〈Should we output something 5.4.2 〉
〈 Is this where an external event is 5.4.3 〉
〈 Is this the point of a boundary condition 5.4.4 〉
〈Check to see if we have integrated far enough 5.4.5 〉

This code is used in section 4.1.1.

In these next several modules we check to see what the next value of t we will encounter is. Notice that
these are not nested conditionals because we can have several of these true at the same time.

〈Are we at the limit of accuracy of the power series 5.4.1 〉 ≡
if (t limit ≤ t) then

tau = t limit − t center
t = t limit
at limit = T
evaluate function = T

end if

This code is used in section 5.4.
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Just like the previous one except for some permutations of names. Some applications may need the
derivatives evaluated too.

〈Should we output something 5.4.2 〉 ≡
if (t output ≤ t) then

tau = t output − t center
t = t output
at output = T
evaluate function = T

end if

This code is used in section 5.4.

Just like the previous two except for some permutations of names. Some applications may need the
derivatives evaluated at these external points. The ‘external’ problems mentioned previously would not
require rewriting this code, the previous section would probably be a better place.

〈 Is this where an external event is 5.4.3 〉 ≡
if (t external ≤ t) then

tau = t external − t center
t = t external
at external = T

end if

This code is used in section 5.4.

This module is different from the previous ones because there is a possibility of several boundary conditions
occurring at the same time. Each could be different.

〈 Is this the point of a boundary condition 5.4.4 〉 ≡
if (t bc i ≤ t) then

tau = t bc i − t center
t = t bc i
at bc = T
j = i bc
do while (t bc i ≡ t bc(j))

if (q(j) > 0) then
evaluate function = T

else if (q(j) < 0) then
evaluate derivative = T

else
evaluate function = T
evaluate derivative = T

end if
j = j + 1

end do
end if

This code is used in section 5.4.
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If one of the above modules has set t to a value greater than t stop , then we need to reduce it.

〈Check to see if we have integrated far enough 5.4.5 〉 ≡
if (t stop ≤ t) then

tau = t stop − t center
t = t stop
at end = T
evaluate function = T

end if

This code is used in section 5.4.

The evaluation of the power series is done by calling the ps eval routine. This is quite simple in the initial
value problem. It would be in a loop on the boundary value case.

The if ’s are separate because both may need evaluation.

〈Evaluate the power series 5.4.6 〉 ≡
do i = 0, max ivp

do j = 1, n
if (evaluate derivative ) then

call ps eval d (PS (0, j, i), m , tau , DP (j, i))
end if
if (evaluate function ) then

call ps eval (PS (0, j, i), m , tau , P (j, i))
end if

end do
end do

This code is used in section 4.1.2.

We introduced two logical variables. They are evaluate function and evaluate derivative . The first is set
to T if we need the function the power series represents and the latter is used in a similar nature if we need
its derivative.

〈Quasi’s input variables 4.1.4 〉 +≡
logical evaluate function , evaluate derivative
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5.5 Use the solution

The at output , at external , and at bc flags must be reset to F when we finish their operations. There may be
several boundary conditions at the current point. The other flags, at limit and at end are not reset because
they indicate it is appropriate to exit the loop.

〈Use the result of the evaluation 5.5 〉 ≡
if (at limit ) then
〈Reached the limit of this expansion 5.5.1 〉

end if
if (at output ) then
〈Output the results, regularly 5.5.2 〉

end if
if (at external ) then
〈Perform any needed work for external reasons 5.5.3 〉

end if
if (at bc) then
〈Save the row of the coefficient matrix 5.5.5 〉

end if
if (at end ) then
〈End game processing 5.7 〉

end if

This code is used in section 4.1.2.

This is a short one. If it were not using i debug , it would probably be removed in a working version. It
allows us to track where the solution is proceeding.

〈Reached the limit of this expansion 5.5.1 〉 ≡
if (i debug > 3) then

write (∗, ∗) ’ At limit ’, tau , t
end if

This code is used in section 5.5.



§5.5.2–§5.5.4 [#65–#67] Ps Quasi, an ODE BVP Solver Use the solution 31

When we reach a regular output point, we simply output the results. It may be that these would also be
written to a file for later graphics use. When one of these is used, the value of t output must be updated.

The initial values are output elsewhere and cannot be supressed. The parameters are also output at the
point where we ‘start the output.’ After the start of the output, we output only the elements of the ODE’s
that may change, in other words we don’t output the constant coefficients or parameters.

〈Output the results, regularly 5.5.2 〉 ≡
if (t ≡ t output start ) then

n out = n
else

n out = n ode
end if
if ((t ≥ t output start ) ∧ (t > t start )) then

write (∗, format t y ) t, (P (j, 0), j = 1, n out )
〈Debug output? All particular solutions 5.8.3 〉

end if
t output = t output + t output delta
at output = F

This code is used in section 5.5.

This will be important when extended for boundary value problems. When one of these is used, the value
of t external must be updated.

If we reach a new “shooting point,” we then must reestablish the initial values.

〈Perform any needed work for external reasons 5.5.3 〉 ≡
〈Change initial values because we are at a shooting point 5.5.4 〉
if (i debug ≥ 4) then

write (∗, ∗) ’ At external ’, t
end if
at external = F

This code is used in section 5.5.

〈Change initial values because we are at a shooting point 5.5.4 〉 ≡

This code is used in section 5.5.3.
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When we are at a boundary condition and storing some function of the solution in the coefficient matrix.
This is nested in a loop because we may have multiple boundary conditions at the same time, t.

〈Save the row of the coefficient matrix 5.5.5 〉 ≡
do while (t ≡ t bc i )
〈Assign i bc row based on constraint vs. observation 5.5.6 〉
do i = 0, max ivp

if (q(i bc) > 0) then
〈Store the element based upon the solution vector 5.5.7 〉

else if (q(i bc) < 0) then
〈Store the element based upon the derivative 5.5.8 〉

else
〈Special boundary condition operators 5.5.9 〉

end if
end do
C(i bc row , max ivp + 1) = bv (i bc)
〈Debug output? Saving 5.8.4 〉
i bc = i bc + 1
〈Check to see if this is last boundary condition 5.1.2 〉

end do
at bc = F

This code is used in section 5.5.

The first count exact bv s+1 rows of the coefficient matrix will be constraints or equations. The rest of
the rows represent observations and are to be modeled in the least squares sense.

〈Assign i bc row based on constraint vs. observation 5.5.6 〉 ≡
if (exact bc(i bc) ≡ 0) then

i bc row = i bc constraint
i bc constraint = i bc constraint + 1

else
i bc row = i bc observation
i bc observation = i bc observation + 1

end if

This code is used in section 5.5.5.

If the boundary condition is on an element of y, then we store it directly (or multiply it by an appropriate
weight.)

〈Store the element based upon the solution vector 5.5.7 〉 ≡
if (exact bc(i bc) ≤ 1) then

C(i bc row , i) = P (q(i bc), i)
else if (exact bc(i bc) > 1) then

C(i bc row , i) = P (q(i bc), i) ∗ (weight exact bc (i bc )−1)
end if

This code is used in section 5.5.5.
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This boundary condition is on the derivative of the state vector. Thus, we use the DP matrix as the source
of values.

〈Store the element based upon the derivative 5.5.8 〉 ≡
if (exact bc(i bc) ≤ 1) then

C(i bc row , i) = DP (−q(i bc), i)
else if (exact bc(i bc) > 1) then

C(i bc row , i) = DP (−q(i bc), i) ∗ (weight exact bc (i bc )−1)
end if

This code is used in section 5.5.5.

Special operators specify use more than a single element of the state vector in specifying a boundary
conditions.

〈Special boundary condition operators 5.5.9 〉 ≡

This code is used in section 5.5.5.

5.6 The end of an iteration

If scoring ≡ 0 then we determine the superposition coefficients and the new estimates for the initial values.
We may output some statistics. If scoring ≡ 1 we complete the line search that is used to really get the new
estimates of the initial values.

〈End of forward integration 5.6 〉 ≡
if (i debug ≥ 2) then

write (∗, ∗) ’ Augmented matrix’
do i = 0, n bc

write (∗, format C ) (C(i, j), j = 0, max ivp + 1)
if (i ≡ count exact bv s )

write (∗, ∗)
end do

end if
final = iteration ≥ iteration max
if (scoring ≡ 0) then
〈Calculate the new initial value estimates 5.6.1 〉

else
〈Perform the line search part of scoring 5.6.2 〉
iteration = iteration + 1

end if

This code is used in section 4.1.
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Vanilla calculation of new estimates of initial values.

〈Calculate the new initial value estimates 5.6.1 〉 ≡
if (¬final ) then
〈Solve for the superposition coefficients 5.6.4 〉
〈Estimate the new initial values, to be revised 5.6.5 〉
〈Check for convergence of the initial values 5.6.7 〉

else
if (n bc > max ivp) then
〈Solve for the superposition coefficients 5.6.4 〉
〈Perform the statistical analysis 7 〉

end if
end if
at end = F

This code is used in section 5.6.

The minimization of the line search part of scoring is quite straightforward. We find two values that
correspond to the values of the function we are minimizing. (A third one is already available.) Then, using a
three point formula to determine a quadratic and its minimum point is trivial. The independent variable of
the formula used is scaled such that −1 is the initial values of the previous iteration, 0 is the vanilla estimate
from the Newton-like step, and 1 would be an accelerated step twice as much as the Newton-like step gave.
Thus, we would expect values fairly close to 0, certainly in a limiting sense.

〈Perform the line search part of scoring 5.6.2 〉 ≡
K n 1 = const (0.0)
K n 2 = const (0.0)
do i = 0, n bc

K n 1 = K n 1 + (C(i, 0)− C(i, max ivp + 1))2

K n 2 = K n 2 + (C(i, 1)− C(i, max ivp + 1))2

end do
〈Calculate the line step 5.6.3 〉
do j = 1, n

y initial (j, 0) = y initial (j, 0) + y change (j) ∗ line step
if (exact iv (j) > 0) then

y initial (j, 0) = min (y initial (j, 0), max iv (j))
y initial (j, 0) = max (y initial (j, 0), min iv (j))

end if
end do
at end = F

This code is used in section 5.6.
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The line step calculation is implemented as a heuristic. If the exponents of the sums of squares are all the
same, then we are so close to convergence that it is of no use. In that case, we use zero because the Newton
step is already incorporated.

We limit this to an interval of (−0.04, 0.04)? Maybe even tighter? Should we create two more input
variables for these limits? Well, it is now an input variable line step limit .

〈Calculate the line step 5.6.3 〉 ≡
i 0 = nint (log (K n 0 ))
i 1 = nint (log (K n 1 ))
i 2 = nint (log (K n 2 ))
if ((i 0 6= i 1 ) | (i 0 6= i 2 ) | (i 1 6= i 2 )) then

line step = const (0.5) ∗ (K n 2 −K n 0 ) / (K n 2 − const (2.0) ∗K n 1 + K n 0 )
if (line step < −line step limit )

line step = −line step limit
if (line step > line step limit )

line step = line step limit
else

line step = 0.0
end if
write (∗, "(a,4g11.3)") ’ Step’, line step , K n 0 , K n 1 , K n 2

This code is used in section 5.6.2.

The solution for the superposition coefficients is accomplished through the use of a rather specialized
Gaussian routine.

The argument final has been set to T if this is the final iteration and it is an overdetermined problem.
Thus, the name can be misleading because we might not actually solve for the superposition coefficients.

A more complete response rather than just stopping should be based upon the value of i return .

The calculation of K n 0 is for use in the method of scoring part of the iteration.

This routine may be effectively parallelized in some problems.

〈Solve for the superposition coefficients 5.6.4 〉 ≡
K n 0 = const (0.0)
do i = 0, n bc

K n 0 = K n 0 + (C(i, 0)− C(i, max ivp + 1))2

end do

call gj svd (C, n bc , n ps , count exact bv s , i debug , i return )
if (i return > 1)

stop

This code is used in section 5.6.1.



§5.6.5–§5.6.6 [#78–#79] Ps Quasi, an ODE BVP Solver The end of an iteration 36

The calculation of the initial values is quite straightforward, if you really understand this. Equation (3),
with the identity (6), and the strategy used to perturb the initial values in 2 make this a simple calculation.
The change in each initial value will be the product of the superposition constant and the perturbation.
Most of the code in this module is needed to make the code efficient in the presence of known initial values.

The variable jj is used in acknowledgement that some efficiency is realized if some of the initial values are
specified to be met exactly.

The change may be scaled and then we also check to see if the new initial value is within the range that
may have been specified.

〈Estimate the new initial values, to be revised 5.6.5 〉 ≡
〈Calculate the norm of the change in the initial values 5.6.6 〉
do j = 1, n

if (exact iv (j) ≥ 0 ∧ y change norm > y change max ) then
y change (j) = y change (j) ∗ (y change max / y change norm )

end if
if (exact iv (j) ≥ 0) then

y initial (j, 0) = y initial (j, 0) + y change (j)
end if
if (exact iv (j) > 0) then

y initial (j, 0) = min (y initial (j, 0), max iv (j))
y initial (j, 0) = max (y initial (j, 0), min iv (j))

end if
end do

This code is used in section 5.6.1.

There is always a possibility of overshoot and limited intervals where the Newton methods work quadrat-
ically. We have found that constraining the change to a finite limit often improves the range of workable
initial estimates and at little cost.

〈Calculate the norm of the change in the initial values 5.6.6 〉 ≡
y change norm = const (0.0)
jj = 0
do j = 1, n

y change (j) = const (0.0)
if (exact iv (j) ≥ 0) then

jj = jj + 1
y change (j) = perturbation (j, 0) ∗ C(jj , max ivp + 1)
y change norm = y change norm + y change (j)2

end if
end do
y change norm = sqrt (y change norm )

This code is used in section 5.6.5.
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We check to see if the initial values have converged. To do this, we compare this to the values that β
should have if the initial values were correct, namely (1, 0, 0, . . .). If we have converged, then we may reduce
iteration max because further iterations are useless.

On the last iteration, we may set the value of t output start to ensure some output. This allows the user
to set it to an arbitrarily large number to avoid output until it is really desired.

〈Check for convergence of the initial values 5.6.7 〉 ≡
max beta = abs (const (1.0)− C(0, max ivp + 1))
do j = 1, max ivp

if (abs (C(j, max ivp + 1)) > max beta ) then
max beta = abs (C(j, max ivp + 1))

end if
end do
if ((max beta ≤ convergence ) ∧ (iteration < iteration max )) then

iteration max = iteration + 1
end if
if ((iteration + 1) ≡ (iteration max ) ∧ (t output start > t stop)) then

t output start = t start
end if

This code is used in section 5.6.1.

5.7 The very end

We can envision several instances when a specific application might wish to make changes at this point.

〈End game processing 5.7 〉 ≡
〈Debug output? At the end 5.8.2 〉

This code is used in section 5.5.
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5.8 Debug output

These are clustered at the end of the major section because they should not interrupt the natural flow of
reading the program. This first module does some output in all cases.

〈Debug output? Initial values 5.8 〉 ≡
if (scoring ≡ 0 | i debug ≥ 1) then

write (output flag , ’(i3,a)’) iteration , ’ > ’
if (iteration ≥ iteration max )

output flag (4 : 4) = ’*’
write (∗, ∗) ’ Initial values for iteration ’, iteration , ’ of ’, iteration max
write (∗, format t 0 ) output flag , t, (P (j, 0), j = 1, n )

end if
if (i debug ≥ 2) then

do i = 1, max ivp
write (∗, format t y ) t, (P (j, i), j = 1, n )

end do
end if

This code is used in section 5.1.

The user will get lots of output if i debug is set to a large value and this output is triggered.

〈Debug output? Power series coefficients 5.8.1 〉 ≡
if (i debug ≥ 5) then

write (∗, ∗) ’ Power series coefficients, t = ’, t center
do i = 0, max ivp

do j = 1, n
if (j ≤ n ode ) then

write (∗, format C ) (PS (k, j, i), k = 0, m )
else

write (∗, format C ) PS (0, j, i)
end if

end do
end do

end if

This code is used in section 5.3.

This gives the user the means of determining the state of the world when the end of the integration interval
has been reached.

〈Debug output? At the end 5.8.2 〉 ≡
if (i debug ≥ 3) then

do i = 0, max ivp
write (∗, format t y ) t, (P (j, i), j = 1, n ode )

end do
write (∗, ∗) ’ At the end ’, t

end if

This code is used in section 5.7.
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Sometimes we wish to output all the particular solutions, not just the base one.

〈Debug output? All particular solutions 5.8.3 〉 ≡
if (i debug ≥ 3) then

do i = 1, max ivp
write (∗, format t y ) t, (P (j, i), j = 1, n out )

end do
end if

This code is used in section 5.5.2.

We can output the individual row of the augmented coefficient matrix as it is saved.

〈Debug output? Saving 5.8.4 〉 ≡
if (i debug > 3) then

write (∗, ∗) ’ Saving ’, i bc , t bc i , exact bc(i bc), q(i bc)
write (∗, format C ) (C(i bc row , i), i = 0, max ivp + 1)

end if

This code is used in section 5.5.5.

6 Extraneous functions
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The function number of fields returns the integer that is the apparent number of numeric fields in the
current input line.

"psq.f" 6.1 ≡
integer function number of fields (line )

implicit none
character line∗(∗)

integer i, length
logical in a number
character c∗1

number of fields = 0
length = len (line )
i = 1
c = line (i : i)
do while (i ≤ length )

in a number = index ("+-0123456789.", c) > 0
if (in a number ) then

number of fields = number of fields + 1
do while (in a number )

i = i + 1
c = line (i : i)
in a number = index ("+-0123456789.dDeE", c) > 0

end do
end if
i = i + 1
c = line (i : i)

end do
end

7 The statistical analysis

The entire procedure we are doing here can be called regression analysis with differential equation models.
Well, the code solves a number of other problems but the central one in the design is to solve those with
observations (boundary conditions with error to be met in a best fit sense).

You might have noticed that when convergence has been achieved, we do one more iteration. This extra
iteration is used to calculate these statistics.

This routine has not been rewritten in a WEB form. At this writing, the routines for calculation of the basic
statistical functions have been completed and tested. The inclusion of all parts of this code in a WEB form is
done for pedagogical reasons, primarily transportability. Production codes will have these replaced by calls to
supported libraries.

〈Perform the statistical analysis 7 〉 ≡

This code is used in section 5.6.1.
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8 Power Series

[the subs.hweb] The power series is one of the more common tools in applied mathematics. It often
comes from the truncated Taylor or Maclaurin series. The solution of ordinary differential equations can be
expressed in this form but it often makes for a lot of work and long expressions.

Power series are an important theoretical tool in mathematics. They can also be used to great advantage
in numerical computations. In many cases the solution of a differential equation can be expressed in terms
of their power series expansions. One disadvantage of this representation is that the formal manipulation of
these power series can often be quite complex.

The Frobenius form is an economical means of calculating these coefficients rather than using the repeated
differentiation. We will describe various routines which will expedite some of the formal manipulations
necessary to solve a fairly broad subset of the common differential equations.

8.1 Evaluation of a Power Series

[the subs.hweb] This will be a straightforward use of Horner’s method. Although we will often have many
related power series, each one will be treated separately.

Horner’s method is to evaluate the power series in a factored form. We use the right hand side of:

m∑
k=0

aktk = a0 + (a1 + (· · · (am−1 + (am)t)t · · ·)t)t

The evaluation of the left side of this equation can be reduced to 2m multiplications and m additions at
best. The right hand side halves the number of multiplications.

The variable v is declared as an array because it is normal to call it with an element of an array, just in
case some compiler is checking these things.

This is so short, we really brute force it!

"psq.f" 8.1 ≡
subroutine ps eval (a, m , t, v)

implicit none
integer m , k
floating a(0 : m ), t, v(1)

v(1) = a(m )
do k = (m − 1), 0, −1

v(1) = a(k) + v(1) ∗ t
end do
return

end
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[the subs.hweb] Evaluation of the derivative of a power series. The evaluation of the derivative of a power
series will also be a use of Horner’s method. This is frequently needed in the inverse problems. It is often
easiest to measure derivatives rather than the phenomena itself.

The derivative is:

m−1∑
k=0

(k + 1)ak+1t
k =

∑m
k=1 kakt(k−1) (22)

= a1 + (2a2 + (· · · ((m− 1)am−1 + m(am)t)t · · ·)t)t (23)
(24)

We normally don’t write the summations except from zero, in this case it makes it a bit more efficient.
Notice that there is one less term in the derivative of the series than there is in the series itself. Also notice
that the evaluation of a derivative requires twice as many multiplications as the function does.

"psq.f" 8.1.1 ≡
subroutine ps eval d (a, m , t, v)

implicit none
integer m , k
floating a(0 : m ), t, v(1)

v(1) = a(m ) ∗m
do k = (m − 1), 1, −1

v(1) = a(k) ∗ k + v(1) ∗ t
end do
return

end
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9 Power Series Operations, arithmetic

[the subs.hweb] The basic arithmetic operations on power series (addition, subtraction, multiplication, and
division) are relatively straightforward. Addition and subtraction are trivial, as they involve only adding and
subtracting the appropriate coefficients. Multiplication is likewise trivial, but involves enough computation
to make a function call worthwhile. Division is quite a bit more complicated, but still can be computed by a
means which is equivalent to that of the longhand division technique for polynomials taught in elementary
algebra.

Other operations to be performed are the exponential, sine and cosine, square root, and arbitrary power
of a power series. We will explain in detail how these functions are calculated.

It should be stressed here that in all the operations described, the function or subroutine computes only
one term of the series each time it is called. Although this may seem counter-intuitive at first, it is this
feature which allows us to be able to use these functions efficiently in the complicated application in which
we will see them.

Again, we will consistently approximate:

x(t) ≈
n∑

i=0

xit
i

This power series, and many others, will be developed by the use of Frobenius recurrence relations. Of
course, we may use a(t), b(t), and a wide array of symbols for these truncated power series.

[the subs.hweb] We first consider computing the product of two power series. The inputs to this function
are two vectors a and b, with indices 0, . . . , n. The product of these is

n∑
k=0

cktk =

(
n∑

k=0

aktk

)(
n∑

k=0

bktk

)

where ck expands to
ck = a0bk + a1bk−1 + . . . + akb0.

The values of elements a0, . . . , ai and b0, . . . , bi are known at the time of the call. The function result,
ps mult , is the term ci defined above.

"psq.f" 9.0.1 ≡
floating function ps mult (a, b, i)

implicit none

〈Declare ps mult variables 9.0.2 〉
〈Compute ps mult result 9.0.3 〉
return

end
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[the subs.hweb] We will declare the input parameters to the function. The arrays a and b probably have
an actual range of 0, . . . , n. We declare a subset range of 0, . . . , i. We must also declare a single local loop
index.

i is the index of the product term to be computed.

a and b are as described above.

k is a local variable used as a loop index.

〈Declare ps mult variables 9.0.2 〉 ≡
integer i
floating a(0 : i), b(0 : i)
integer k

This code is used in section 9.0.1.

[the subs.hweb] The computation is a rather straightforward implementation of the above formula for ck,
using a loop to sum the result. We note that the saving of one addition will not work in Fortran 66. That
does not count because it did not have zero indices anyway.

〈Compute ps mult result 9.0.3 〉 ≡
ps mult = a(0) ∗ b(i)
do k = 1, i

ps mult = ps mult + a(k) ∗ b(i− k)
end do

This code is used in section 9.0.1.
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[the subs.hweb] To compute the quotient of two power series, we use an adaptation of longhand division
of polynomials (with some “neat tricks” to help simplify the computation.) We compute the quotient q as
follows:

q(t) =
u0 + u1t + . . . + uit

i

d0 + d1t + . . . + diti

If we attempt to perform the long division symbolically at this point, we might quickly despair at the
successively increasing complexity of each coefficient. However, we observe that each successive coefficient
of the quotient series depends on the previous coefficients. Simplifying, we obtain the following formula:

qi =
ui −

∑i−1
k=0 qkdi−k

d0

The following function will return the coefficient of the ith term of of the quotient q, where u is the
numerator and d is the denominator. The quotient q is also an argument because the q0, . . . , qi−1 are needed
to compute qi.

"psq.f" 9.0.4 ≡
floating function ps div (u, d, i, q)

implicit none

〈Declare ps div variables 9.0.5 〉
〈Compute ps div result 9.0.6 〉
return

end

[the subs.hweb] We will declare the parameters to the function. u and d are vectors with indices of
0, . . . , n. The vector of quotient coefficients, q, must be also be sent, as described above. We must declare
a single local loop index.

i is the index of the quotient term to be computed.

u is the numerator, d is the denominator, and q is the quotient. All of these have an upper limit of i.

k is a local variable used as a loop index.

〈Declare ps div variables 9.0.5 〉 ≡
integer i
floating u(0 : i), d(0 : i), q(0 : i)
integer k

This code is used in section 9.0.4.
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[the subs.hweb] The computation is a straightforward application of the above formula for qi, using a
loop to perform the required sum. The function result is summed in ps div and copied into qi .

〈Compute ps div result 9.0.6 〉 ≡
ps div = u(i)
do k = 0, i− 1

ps div = ps div − q(k) ∗ d(i− k)
end do
ps div = ps div / d(0)
q(i) = ps div

This code is used in section 9.0.4.

[the subs.hweb] Transcendental functions. To compute the exponential function of a power series it is
necessary to use our knowledge of elementary calculus. We derive the series as follows: If

e(t) = exp(a(t))

then by differentiating (and omitting the (t) of each term) we obtain

ė = exp(a)ȧ = eȧ

or
e1 + 2e2t + . . . + ieit

i−1 = (e0 + e1t + . . . + eit
i)(a1 + 2a2t + . . . + iait

i−1)

If we equate the coefficients of ti−1 on either side we obtain the relation:

iei = iaie0 + (i− 1)ai−1e1 + . . . + a1ei−1

or

ei =
∑i

k=1 kakei−k

i

It is clear that e0 = exp(a0) from the definition of e(t). The kak term is a manifestation of ȧ(t).

"psq.f" 9.0.7 ≡
floating function ps exp(a, i, e)

implicit none

〈Declare ps exp variables 9.0.8 〉
if (i ≡ 0) then
〈Perform the trivial case for ps exp 9.0.9 〉

else
〈Perform the general case for ps exp 9.0.10 〉

end if
e(i) = ps exp
return

end
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[the subs.hweb] We declare the parameters for the ps exp . The argument of the the exponential function
is a, i is the current term that we are calculating, and e is the vector of the previous results (e needs to be
passed because the previous coefficients are used in computing the next one.) We also declare a single local
loop index.

i is the index of the exponential term to be computed.

a and e are the zero-indexed vectors described above. Their upper limit is i.

k is a local variable used as a loop index.

〈Declare ps exp variables 9.0.8 〉 ≡
integer i
floating a(0 : i), e(0 : i)
integer k

This code is used in section 9.0.7.

[the subs.hweb] The 0th term is the trivial case, where e0 = exp(a0).

〈Perform the trivial case for ps exp 9.0.9 〉 ≡
ps exp = exp (a(0))

This code is used in section 9.0.7.

[the subs.hweb] The general case is a straightforward implementation of the formula for ei described
above.

〈Perform the general case for ps exp 9.0.10 〉 ≡
ps exp = a(1) ∗ e(i− 1)
do k = 2, i

ps exp = ps exp + k ∗ a(k) ∗ e(i− k)
end do
ps exp = ps exp / i

This code is used in section 9.0.7.
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[the subs.hweb] The natural logarithm. To compute the natural logarithm of a power series it is necessary
to use our knowledge of elementary calculus. We derive the series as follows: If

u(t) = ln(a(t))

then by differentiating (and omitting the (t) of each term) we obtain

u̇ =
ȧ

a

or

u1 + 2u2t + . . . + iuit
i−1 =

(a1 + 2a2t + . . . + iait
i−1)

(a0 + a1t + . . . + aiti)

If we equate the coefficients of ti−1 on either side we obtain the relation:

iui = qi

where qi is the appropriate term in the quotient.

It is clear that u0 = ln(a0) from the definition of u(t). The efficient form of the division routine requires
knowing the quotient at each stage. This is calculated in this routine based upon the realization that this
quotient is the derivative of the result. This additional cost is considered worthwhile when compared with
the long range confusion of having an additional argument to the call.

"psq.f" 9.0.11 ≡
floating function ps ln (a, i, u)

implicit none

〈Declare ps ln variables 9.0.12 〉
if (i ≡ 0) then
〈Perform the trivial case for ps ln 9.0.13 〉

else
〈Perform the general case for ps ln 9.0.14 〉

end if
u(i) = ps ln
return

end

[the subs.hweb] We declare the parameters for the ps ln . The argument of the the logarithm function
is a, i is index of the term we are calculating, and u is the vector of the previous results. This needs to be
passed because the previous coefficients are used in computing the next one. We also declare a local loop
index, k.

〈Declare ps ln variables 9.0.12 〉 ≡
integer i
floating a(0 : i), u(0 : i)
integer k

This code is used in section 9.0.11.
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[the subs.hweb] The 0th term is the trivial case, where u0 = ln(a0).

〈Perform the trivial case for ps ln 9.0.13 〉 ≡
ps ln = log (a(0))

This code is used in section 9.0.11.

[the subs.hweb] The general case is not a straightforward implementation of the above formula. As
indicated, this needs a quotient of power series. This quotient is u1 + 2u2t + . . . + iuit

i−1 and is “re-
calculated” as needed. The rest of this can be understood when carefully compared with the routine ps div .
Notice the last line of code is the division required by the method of Frobenius while the division routine is
algebra, not calculus.

〈Perform the general case for ps ln 9.0.14 〉 ≡
ps ln = i ∗ a(i)
do k = 0, i− 1

ps ln = ps ln − (k + 1) ∗ u(k + 1) ∗ a(i− k − 1)
end do
ps ln = ps ln / a(0)
ps ln = ps ln / (i)

This code is used in section 9.0.11.

[the subs.hweb] The square. The next function we will need for the power series operations is the function
to square the vector. It should be noted that the square function is simply a special case of multiplication.
We have optimized it here for reasons of efficiency.

We pair the identical terms in the sum so that they need not be computed for a second time. The
modification of the recurrence formula can be expressed as follows:

ci =



(a0)2 if i = 0

2
i−1
2∑

k=0

akai−k if i > 0 and odd

(a i
2
)2 + 2

b i−1
2 c∑

k=0

akai−k if i > 0 and even

"psq.f" 9.0.15 ≡
floating function ps sqr (a, i)

implicit none

〈Declare ps sqr variables 9.0.16 〉
if (i ≡ 0) then

ps sqr = a(0) ∗ a(0)
else
〈Compute ps sqr sum 9.0.17 〉
〈Check for an odd number of terms and update ps sqr 9.0.18 〉

end if
return

end
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[the subs.hweb] We will declare the input parameters to the function. The vector a has indices 0, . . . , n
and is input to the function. We must also declare a single local loop index.

i is the index of the square term to be computed.

a is the input vector of power series coefficients.

k is a local variable used as a loop index.

〈Declare ps sqr variables 9.0.16 〉 ≡
integer i
floating a(0 : i)
integer k

This code is used in section 9.0.15.

[the subs.hweb] The computation is a rather straightforward adaptation of the ps mult computation. It
is made more efficient by pairing the identical terms in the sum so that they are computed only once. The if
statement is necessary around the do to prevent the execution of the do loop when computing the coefficient
of the 0th term.

〈Compute ps sqr sum 9.0.17 〉 ≡
ps sqr = a(0) ∗ a(i)
do k = 1, (i− 1) / 2

ps sqr = ps sqr + a(k) ∗ a(i− k)
end do
ps sqr = const (2.0) ∗ ps sqr

This code is used in section 9.0.15.

[the subs.hweb] We now need to check for an odd number of terms. If so the middle term has not been
added to ps sqr and we need to add it to our sum.

〈Check for an odd number of terms and update ps sqr 9.0.18 〉 ≡
if (mod (i, 2) ≡ 0) then

ps sqr = ps sqr + a(i / 2)2

end if

This code is used in section 9.0.15.
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[the subs.hweb] The power function. To compute the coefficients ri of the power series resulting from
raising a power series a to an arbitrary real power p, we write

r = ap

Differentiation yields
ṙ = pap−1ȧ

After multiplying both sides by a we obtain
ṙa = prȧ

Expanded out, this is

(r1 + 2r2t + . . . + irit
i−1)(a0 + a1t + . . . + ait

i)
= p(r0 + r1t + . . . + rit

i)(a1 + 2a2t + . . . + iait
i−1)

Thus, by equating coefficients for ti−1 we have

i∑
k=1

krkai−k = p
i∑

k=1

kakri−k

Solving this we can obtain the coefficients ri by the recurrence

ri =
ipair0 +

∑i−1
k=1 k(pakri−k − rkai−k)

ia0

"psq.f" 9.0.19 ≡
floating function ps pwr (a, p, i, r)
〈Declare variables for ps pwr 9.0.20 〉
if (i ≡ 0) then
〈Perform the trivial case for ps pwr 9.0.21 〉

else
〈Perform the general case for ps pwr 9.0.22 〉

end if
r(i) = ps pwr
return

end

[the subs.hweb] We will declare the parameters to the function. a is our input power series, p is the power
to which we wish to raise a, i is the current term that we are calculating, and r is the vector of previously
computed coefficients (r needs to be passed because the previous coefficients are used in computing the next
one.) We also declare a single local loop index k.

〈Declare variables for ps pwr 9.0.20 〉 ≡
implicit none
integer i
floating a(0 : i), p, r(0 : i)

integer k

This code is used in section 9.0.19.
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[the subs.hweb] the 0th term is the trivial case, where r0 = (a0)p.

〈Perform the trivial case for ps pwr 9.0.21 〉 ≡
ps pwr = a(0)p

This code is used in section 9.0.19.

[the subs.hweb] Now, we can perform the calculation for all other cases by the recurrence formula derived
above.

〈Perform the general case for ps pwr 9.0.22 〉 ≡
ps pwr = p ∗ i ∗ a(i) ∗ r(0)
do k = 1, i− 1

ps pwr = ps pwr + (k) ∗ (p ∗ a(k) ∗ r(i− k)− r(k) ∗ a(i− k))
end do
ps pwr = ps pwr / (i ∗ a(0))

This code is used in section 9.0.19.

[the subs.hweb] The square root. As a final example, we will compute the square root r of a power
series a. (We could use the ps pwr function with p = 0.5, but this will be more efficient.) The derivation is
reasonably straightforward:

r =
√

a

is equivalent to
r2 = a

or
(r0 + r1t + . . . + rit

i)2 = a0 + a1t + . . . + ait
i

By equating coefficients on ti we obtain

r0ri + r1ri−1 + . . . + rir0 = ai

Solving for ri yields the recurrence

ri =
1

2r0

[
ai −

i−1∑
k=1

rkri−k

]
with r0 =

√
a0. The implementation takes advantage of the symmetry of the sum, like it was done in the

ps sqr routine.

"psq.f" 9.0.23 ≡
floating function ps sqrt (a, i, r)
〈Declare ps sqrt variables 9.0.24 〉
if (i ≡ 0) then
〈Perform the zero case for ps sqrt 9.0.25 〉

else
〈Perform the general case for ps sqrt 9.0.26 〉

end if
r(i) = ps sqrt
return

end
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[the subs.hweb] We will declare the parameters to the function. a is the zero-indexed vector of coefficients
for the power series we are taking the square root of, i is the current term that we are calculating, and r is the
vector of previous results (which needs to be passed because the previous coefficients are used in computing
the next one.) We also declare a single local loop index.

i is the index of the square root term to be computed.

a and r are the zero-indexed vectors described above and their upper limit is i.

k is a local variable used as a loop index.

〈Declare ps sqrt variables 9.0.24 〉 ≡
implicit none
integer i
floating a(0 : i), r(0 : i)
integer k

This code is used in section 9.0.23.

[the subs.hweb] The 0th term is a trivial case, where r0 =
√

a0.

〈Perform the zero case for ps sqrt 9.0.25 〉 ≡
ps sqrt = sqrt (a(0))

This code is used in section 9.0.23.

[the subs.hweb] The general case is not quite straightforward. We have a special form when i = 1 and
have to check for the odd central term because we avoid summing both ends of the sum to take advantage
of the symmetry.

〈Perform the general case for ps sqrt 9.0.26 〉 ≡
if (i ≡ 1) then

ps sqrt = const (0.5) ∗ a(1) / r(0)
else

ps sqrt = const (0.0)
do k = 1, (i− 1) / 2

ps sqrt = ps sqrt + r(k) ∗ r(i− k)
end do
if (mod (i, 2) ≡ 0) then

ps sqrt = ps sqrt + const (0.5) ∗ r(i / 2)2

end if
ps sqrt = (const (0.5) ∗ a(i)− ps sqrt ) / r(0)

end if

This code is used in section 9.0.23.
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9.1 Trigonometric Functions

[the subs.hweb] To compute the trigonometric functions of a power series we will use a “trick” similar to
that of the exponential function. We derive the sine and cosine of a power series as follows: If

s = sin(a)

and
c = cos(a)

then by differentiating, we obtain
ṡ = cos(a)ȧ = cȧ

and
ċ = − sin(a)ȧ = −sȧ

Expanded, these become

s1 + 2s2t + . . . + isit
i−1 = (c0 + c1t + . . . + cit

i)(a1 + 2a2t + . . . + iait
i−1)

and
c1 + 2c2t + . . . + icit

i−1 = −(s0 + s1t + . . . + sit
i)(a1 + 2a2t + . . . + iait

i−1)

If we equate the coefficients of ti−1 on either side we obtain the recurrences:

isi = iaic0 + (i− 1)ai−1c1 + . . . + a1ci−1

and
−ici = iais0 + (i− 1)ai−1s1 + . . . + a1si−1

with
s0 = sin(a0)

and
c0 = cos(a0)

It is thus convenient to calculate the sine and cosine series together, although only one of them might be
present in the equation.

[the subs.hweb] Now for the Fortran code. This will be a subroutine because we actually calculate
(and in a sense return) two values with each call, namely s(i) and c(i).

"psq.f" 9.1.1 ≡
subroutine ps trig (a, i, s, c)

implicit none

〈Declare ps trig variables 9.1.2 〉
if (i ≡ 0) then
〈Do the trivial case for ps trig 9.1.3 〉

else
〈Do the general case for ps trig 9.1.4 〉

end if
return

end
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[the subs.hweb] The arguments must be declared. They are: a, the argument of the sine and cosine
functions; s and c, the trig functions; and k, the index of the coefficients being calculated. The first three of
these are power series and therefore have a lowest subscript of zero. k is used as a loop control variable.

〈Declare ps trig variables 9.1.2 〉 ≡
integer i
floating a(0 : i), s(0 : i), c(0 : i)

integer k

This code is used in section 9.1.1.

[the subs.hweb] When calculating the zeroth coefficient, we use the library functions.

〈Do the trivial case for ps trig 9.1.3 〉 ≡
s(0) = sin (a(0))
c(0) = cos (a(0))

This code is used in section 9.1.1.

[the subs.hweb] The general coefficient, i.e. when i 6= 0, requires a multiplication of power series
operators. Remember that we are calculating sin and cos both because they are dependent upon each
other.

〈Do the general case for ps trig 9.1.4 〉 ≡
s(i) = c(i− 1) ∗ a(1)
c(i) = s(i− 1) ∗ a(1)
do k = 2, i

s(i) = s(i) + c(i− k) ∗ (k ∗ a(k))
c(i) = c(i) + s(i− k) ∗ (k ∗ a(k))

end do
s(i) = s(i) / i
c(i) = −c(i) / i

This code is used in section 9.1.1.
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10 Additional work on the power series operators

[the subs.hweb] There are a few more operations that are needed for some applications. They may not
be added in the next month or so, but they are planned. These include ps shift which would allow the
multiplication or division of a power series by the independent variable to an arbitrary integral power, like
in Bessel’s equations. Of course, this can be done by defining that operand in terms of the ps mult or ps div
operations and using a series (like x in the tests above). That would not give maximum efficiency and can
cause some more problems when considering singularities.

Another routine more in line with those already shown is integration, like in integro-differential equations.
This has been done but we want to let it settle in out minds and use it in several samples before releasing
its format and implied need of maintenance for a reasonable future.

Gibbons also included a reciprocal routine. We have chosen not to implement it because our target is
differential equations and such terms are rare in the ones we use. Gibbons included a log routine which we
probably need but have not implemented.

June 1, 1990.
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11 References

[the subs.hweb] The following references are available to some extent and show a number of uses and
background work. They are annotated to a slight extent and additional references are welcome.

Corliss, G. F., and Chang, Y. F. Solving Ordinary Differential Equations using Taylor Series, ACM
Transactions on Mathematical Software, vol. 8, no. 2, pp. 114-144 (1982). Chang and Corliss have
written several articles over the past few years applying power series methods to systems of ODEs. Their
work has focused mostly on the series analysis of long power series. This has important theoretical use,
but the empirical evidence we have obtained indicates that long power series are not needed in the types
of problems commonly encountered.

Doiron, H. H. Numerical Integration via Power Series Expansions, M.S. Thesis, University of Houston,
Houston, Texas, August 1967. The primary results in this thesis show that these integration methods
are fast. These and other tests usually show that the use of these methods saves approximately 80
percent of the CPU time. It uses some archaic data structures rather to do some of these functions
(like sine and cosine). The algorithms here are superior.

Fehlberg, E. Numerical Integration of Differential Equations by Power Series Expansions, Illustrated by
Physical Examples. NASA Technical Note No. TN D-2356, October 1964. The two examples are a
restricted three-body problem and the motion of an electron in the field of a magnetic dipole. The results
indicate a required CPU time of 15 to 20 percent of the Runge-Kutta-Nyström method.

Gibbons, A. A Program for the Automatic Integration of Differential Equations using the Method of Taylor
Series, Computer Journal, vol. 3, pp. 108-111 (1960). A good source of algorithms and discussion of
the procedures. The term “practical radius of convergence” is introduced which is like the “numeric
continuation” term used in this paper.

Henrici, P. Automatic Computations with Power Series, Journal of the ACM, Vol. 3, no. 1, (1956). An
early reference of doing similar work in a symbolic fashion. His operations are not as efficient as
those described in this paper. Applications included are combinatorial analysis, asymptotic expansions,
computing Legendre polynomials, and solving differential equations.

Moore, R. E. Interval Analysis, Englewood Cliffs, New Jersey: Prentice-Hall, 1966. Moore used the control
of the local truncation error in solving differential equations by power series as an application of interval
analysis. He gave heruistics for choosing step-sizes and series length for this method.

There are many other references to the use of power series as integrators but they don’t really affect the
spirit of this work. We will include them in the next revision.
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12 A constrained least squares

[gj svd.hweb] This routine will solve a system of simultaneous equations. If the system is overdetermined, it
will reduce the equations which are to be met exactly (within machine precision) and then form the normal
equations. It will do full pivoting and a call to the subroutine svd .

This routine will also perform some initializations for the call to the subroutine stanal . (This has not
yet been converted to the WEB form.)

When the entire code is rewritten using current compilers such as C++ and/or Fortran 90, we will be
considering using Bai’s version from LaPack as the base.

12.1 Gauss Jordan reduction with least squares

[gj svd.hweb] This subroutine has a large number of arguments. Some of these are obvious and some require
a bit more explanation. We also merge into this list some parameters.

A is the Fortran name of the augmented coefficient matrix, A.
max n bc is the number of rows in the type statement declaring A. parameter

max n p is the number of columns in the dimension of the coefficient matrix A while max n is the maximum
order of the system max n p = max n + 1. parameters
n is the order of the system. It is one less than the number of actual columns used in A, since the right hand
side is an augmented column.
number exact is the number of constraints. This is the number of equations to be met exactly while the rest
of the equations are met in a least squares fit.
i debug is normally zero. Positive values will cause different levels of output which are handy in debugging
a new application of the routines.
i return should return with a zero value if the solution is successful. A value of one is considered a warning.
Larger positive values should be considered as fatal errors. The routines need extensive work to put some
form of a condition number into the implementation.
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[gj svd.hweb] One of the great advantages of the WEB style of literate programming is that the global view
of the code can appear in one module:

"psq.f" 12.1.1 ≡
subroutine gj svd (A, num rows A, n, number exact , i debug , i return )

implicit none

〈Declare variables for gj svd 12.1.2 〉
〈Check parameters and initialize variables for gj svd 12.1.5 〉
k = 0
do while (k ≤ n)
〈Debug output? Reducing k 13.1.1 〉
if (k ≡ (number exact + 1) ∧ n < num rows A) then
〈This is the first observation, call svd for the rest 13 〉
k = n + 1

else
〈Find max pivot element 12.1.9 〉
〈Swap column and row pointers 12.1.10 〉
〈Divide Row by Max element 12.1.11 〉
〈Perform in place reduction 12.1.12 〉
k = k + 1

end if
end do
〈Permute the solution matrix into original form 12.1.13 〉
〈Output the whole mess 13.0.6 〉
i return = 0
return

end

[gj svd.hweb] First we will declare the parameters for this subroutine. The equations will be partitioned
as: [

A1 A2

A3 A4

]{
βe

βl

}
=
{

de

dl

}
where A1 will be a square and order n. This will be transformed into the equivalent form:[

I A
′

2

0 A
′

4

]{
βe

βl

}
=
{

d
′

e

d
′

l

}
The prime superscripts indicate those elements have changed in the reduction process. The value of final is
set to true on the last iteration if statistics are to be displayed.

〈Declare variables for gj svd 12.1.2 〉 ≡
integer num rows A, n, number exact , i debug , i return
logical final

See also sections 12.1.3 and 12.1.4.

This code is used in section 12.1.1.
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[gj svd.hweb] Now we will need some local variables. i,j,and k are counters. kk is a temporary variable
used on the innermost loops when multiplying arrays. The variables row ptr and col ptr are pointers used in
swapping rows and columns. The variable, value , is the element we are currently comparing. The maximum
value is stored in pivot value .

〈Declare variables for gj svd 12.1.2 〉 +≡
integer max n , m, max n bc , max n p
parameter (m = 12, max n = 15, max n p = 16, max n bc = 400)
integer row ptr (0 : max n bc), col ptr (0 : max n p), i, j, k, kk
floating A(0 : max n bc , 0 : max n p)
integer max row pivot select , max row elimination
integer row k , col k , row kk , col kk , i ls , j ls , rows ls , cols ls , ierr
floating value , pivot value
logical over
character format pivot∗64, format matrix ∗64, format solution∗64

[gj svd.hweb] These arrays are used to pass to svd .

〈Declare variables for gj svd 12.1.2 〉 +≡
floating A 4 (1 : max n bc , 1 : max n p), U(1 : max n bc , 1 : max n p)
floating V (1 : max n bc , 1 : max n p), sigma (max n ), work (max n )
floating A 4 t A 4 i (max n , max n )

[gj svd.hweb] There are a few consistency checks that we should make. These take so little time and can
point out errors that are otherwise hard to catch.

〈Check parameters and initialize variables for gj svd 12.1.5 〉 ≡
〈Check for non-fatal and fatal sizes of A 12.1.6 〉
if (i return > 1) then

return
end if

See also sections 12.1.7 and 12.1.8.

This code is used in section 12.1.1.
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[gj svd.hweb] These are fairly self-explanatory. These would make a little more sense when this code is
rewritten to use strictly calling arguments and avoid the use of parameter statements. All these checks
result in fatal messages.

〈Check for non-fatal and fatal sizes of A 12.1.6 〉 ≡
if (n > max n bc) then

write (∗, ∗) ’ Order higher than row dimension ’, n, max n bc
i return = 2

end if
if (n ≥ max n p) then

write (∗, ∗) ’ Order higher than column dimension ’, n, max n p
i return = 2

end if
if (num rows A > max n bc) then

write (∗, ∗) ’ More rows than row dimension ’, num rows A, max n bc
i return = 2

end if
if (n > num rows A) then

write (∗, ∗) ’ Order more than number of rows ’, n, num rows A
i return = 2

end if

This code is used in section 12.1.5.

[gj svd.hweb] We need to define the formats we will use.

〈Check parameters and initialize variables for gj svd 12.1.5 〉 +≡
format pivot = ’(20x,i5,’’th pivot ’’,g15.7,2i5)’
format matrix = ’(1x,i3,(t5,7g10.4))’
format solution = ’(1x,g11.4,(t12,6g11.4))’

[gj svd.hweb] Now, we need to make some initializations of the row and column index vectors. The nature
of some of the problems we intend to solve may have constraints in the parameters of the ODEs. We will
always place these parameters in the higher order of the state vector. This may create a few exact equations
that necessitate maximum pivot selection in the first part of the process. Further, after we have put the
normal equations in place, we no longer have to do elimination on an overdetermined set.

〈Check parameters and initialize variables for gj svd 12.1.5 〉 +≡
max row pivot select = number exact
max row elimination = num rows A
do i = 0, max n bc

row ptr (i) = i
end do
do j = 0, max n p

col ptr (j) = j
end do
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[gj svd.hweb] We first need to loop throught the rows finding the column with the maximum pivot
element.

〈Find max pivot element 12.1.9 〉 ≡
pivot value = 0.0
do i = k, max row pivot select

do j = k, n
if (abs (A(row ptr (i), col ptr (j))) > abs (pivot value )) then

row k = i
col k = j
pivot value = A(row ptr (i), col ptr (j))

end if
end do

end do

This code is used in section 12.1.1.

[gj svd.hweb] Now, we need to swap our pointers for moving the row and column with the maximum
element.

〈Swap column and row pointers 12.1.10 〉 ≡
row kk = row ptr (row k )
row ptr (row k ) = row ptr (k)
row ptr (k) = row kk
col kk = col ptr (col k )
col ptr (col k ) = col ptr (k)
col ptr (k) = col kk

This code is used in section 12.1.1.

[gj svd.hweb] Next, we can divide the row by the maximum element in order to get unity on the diagonal
of the matrix.

〈Divide Row by Max element 12.1.11 〉 ≡
if (i debug > 1) then

write (∗, format pivot ) k, pivot value , row kk , col kk
end if
A(row kk , col ptr (k)) = const (1.0)
do j = k + 1, n + 1

A(row kk , col ptr (j)) = A(row kk , col ptr (j)) / pivot value
end do

This code is used in section 12.1.1.
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[gj svd.hweb] Now we can reduce the matrix, and produce the Identity matrix needed for the least squares
method. It may seem like a wasted action to set the below diagonal values to zero, but this is done for aid
in debugging.

〈Perform in place reduction 12.1.12 〉 ≡
do i = 0, max row elimination

if (i 6= k) then
value = A(row ptr (i), col kk )
A(row ptr (i), col kk ) = const (0.)
do kk = k + 1, n + 1

A(row ptr (i), col ptr (kk )) = A(row ptr (i), col ptr (kk ))− value ∗A(row kk , col ptr (kk ))
end do

end if
end do

This code is used in section 12.1.1.

[gj svd.hweb] Now, we are ready to permute the solution matrix such that the original rows are in the
correct position. This is necessary because we had to do maximum pivoting and it is possible that some
columns may have been interchanged. In the call to these routines with the last iteration, we don’t actually
solve the equations. We return with the inverse of the cTc matrix in the lower right square part. Also, there
must be an identity in the upper left part. The upper right and lower right parts are used in establishing
the covarience matrices and so this permuting is necessary.

〈Permute the solution matrix into original form 12.1.13 〉 ≡
do k = 0, n

if (row ptr (k) 6= col ptr (k)) then
〈Swap rows in the augmented matrix 12.1.14 〉

end if
〈Update the row pointers 12.1.15 〉

end do

This code is used in section 12.1.1.

[gj svd.hweb] This do loop is not wasted as we explained in the previous module. It also happens that
swapping the rows to end up with an identity was an aid during the debugging stages.

〈Swap rows in the augmented matrix 12.1.14 〉 ≡
do j = 0, n + 1

value = A(row ptr (k), j)
A(row ptr (k), j) = A(col ptr (k), j)
A(col ptr (k), j) = value

end do

This code is used in section 12.1.13.
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[gj svd.hweb] This is simply necessary bookkeeping. The loop may look strange at first, but the incre-
menting of the index takes us one too far, so we subtract one after the loop.

〈Update the row pointers 12.1.15 〉 ≡
i = k
over = F
do while ((i ≤ n) ∧ (¬over ))

if (row ptr (i) ≡ col ptr (k)) then
over = T

end if
i = i + 1

end do
i = i− 1
row ptr (i) = row ptr (k)
row ptr (k) = i

This code is used in section 12.1.13.

13 Do the svd stuff

[gj svd.hweb] When the index of the reduction process, k, points at the first observation (a boundary
condition to be met in a least squares sense) then we call svd for the rest. We don’t do this unless there are
more observations than needed so a best fit will be meaningful.

〈This is the first observation, call svd for the rest 13 〉 ≡
rows ls = num rows A − k + 1
cols ls = n− k + 1
〈Copy the least squares part of A to A 4 13.0.1 〉
call svd (max n bc , rows ls , cols ls , ierr , A 4 , sigma , U, V , work , T , T )
〈Perform appropriate multiplications by U and V 13.0.2 〉
〈Copy the inverse of the normal matrix into A 13.0.4 〉
〈Finish it up by back substitution 13.0.5 〉

This code is used in section 12.1.1.

[gj svd.hweb] We need only the least squares part copied into A 4 . We must be careful and use the
pointers into the original matrix.

〈Copy the least squares part of A to A 4 13.0.1 〉 ≡
i ls = 0
do i = k, num rows A

i ls = i ls + 1
j ls = 0
do j = k, n + 1

j ls = j ls + 1
A 4 (i ls , j ls ) = A(row ptr (i), col ptr (j))

end do
end do

This code is used in section 13.
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[gj svd.hweb] First, we get the solution of the overdetermined equations by creating work by post-
multiplying UT by the rhs. Then we postmultiply V by work and include the Σ−1 (remember that Σ is
diagonal.)

〈Perform appropriate multiplications by U and V 13.0.2 〉 ≡
do i = 1, cols ls

work (i) = 0.0
do j = 1, rows ls

work (i) = work (i) + U(j, i) ∗ A 4 (j, cols ls + 1)
end do

end do

do i = 1, cols ls
A 4 (i, cols ls + 1) = 0.0
do j = 1, cols ls

A 4 (i, cols ls + 1) = A 4 (i, cols ls + 1) + V (i, j) ∗ work (j) / sigma (j)
end do

end do

See also section 13.0.3.

This code is used in section 13.

[gj svd.hweb] Calculate the inverse of the coefficient matrix of the normal equations. A little algebra
from the definition of U and V

A = UΣV T

gives
(AT A)−1 = V Σ−2V T

Since Σ is diagonal and U and V are orthogonal, it is rather straightforward.

〈Perform appropriate multiplications by U and V 13.0.2 〉 +≡
do i = 1, cols ls

do j = 1, cols ls
A 4 t A 4 i (i, j) = 0.0
do kk = 1, cols ls

A 4 t A 4 i (i, j) = A 4 t A 4 i (i, j) + (V (i, kk ) ∗ V (j, kk )) / sigma (kk )2

end do
end do

end do
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[gj svd.hweb] Now that we have finished calculating, we need to copy this back to where it will be used.

〈Copy the inverse of the normal matrix into A 13.0.4 〉 ≡
i ls = 0
do i = k, num rows A

i ls = i ls + 1
j ls = 0
do j = k, n + 1

j ls = j ls + 1
if (j > n) then

A(row ptr (i), col ptr (j)) = A 4 (i ls , j ls )
else

A(row ptr (i), col ptr (j)) = A 4 t A 4 i (i ls , j ls )
end if

end do
end do

This code is used in section 13.

[gj svd.hweb] Now we have a little back substitution that is to be finished.

〈Finish it up by back substitution 13.0.5 〉 ≡
do i = 0, k − 1

do j = k, n
A(row ptr (i), n + 1) = A(row ptr (i), n + 1)−A(row ptr (i), col ptr (j)) ∗A(row ptr (j), n + 1)

end do
end do
if (i debug > 0) then

write (∗, ∗) ’ Solution:’, (A(i, n + 1), i = 0, n)
end if

This code is used in section 13.

[gj svd.hweb] This needs to be modified to include debug options rather than always outputting.

〈Output the whole mess 13.0.6 〉 ≡
if (i debug ≥ 2) then

if (ierr 6= 0)
write (∗, ’(’’ trouble. ierr=’’, i4)’) ierr

write (∗, ’(" Sigma",7f10.6)’) (sigma (j), j = 1, cols ls )

write (∗, ∗) " U"
do i = 1, rows ls

write (∗, ’(7f10.6)’) (U(i, j), j = 1, cols ls )
end do

write (∗, ∗) " V"
do i = 1, cols ls

write (∗, ’(7f10.6)’) (V (i, j), j = 1, cols ls )
end do

end if

This code is used in section 12.1.1.
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13.1 More debug output

[gj svd.hweb] This module is used by several of the following ones.

The coefficient matrix is output with the row number. Notice that the number of rows output may change.

〈Output the coefficient matrix 13.1 〉 ≡
do i = 0, max row elimination

write (∗, format matrix ) i, (A(i, j), j = 0, n + 1)
if (i ≡ number exact )

write (∗, ∗) ’ ^ Constraints ^ / v Observations v’
end do

This code is used in section 13.1.1.

[gj svd.hweb] This is one of the most verbose requests that can be made. The augmented coefficient
matrix will be output and then again . . .

〈Debug output? Reducing k 13.1.1 〉 ≡
if (i debug > 3 | (i debug ≡ 3 ∧ i ≡ 1)) then

write (∗, ∗) ’ Reducing k =’, k
〈Output the coefficient matrix 13.1 〉

end if

This code is used in section 12.1.1.
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14 The subroutine SVD

[svd.hweb] This subroutine is a translation of the ALGOL procedure svd, Num. Math. 14, 403-420(1970)
by Golub and Reinsch. Also see Handbook for Automatic Computation, vol. ii-linear algebra, 134-151(1971).
It was modified and adapted to the WEB programming style. Its modification is rather imcomplete at this
stage in that it still suffers from the Fortran tradition of short names, no underscores, . . . The actual
source used came from the text by Forsythe, Malcolm, and Moler.

"psq.f" 14 ≡
subroutine svd (nm , m, n, ierr , A, w, U, V , rv1 , matv , matu )

implicit none
integer mn , m, n, ierr
real∗8 A(nm , n), w(n), U(nm , n), V (nm , n), rv1 (n)
logical matv , matu , test split , test conv

〈Subroutine svd local variables 14.2 〉
〈Set Initial Values 14.3 〉
〈Copy the Array 14.1 〉
〈Do Householder Reduction 14.4 〉
if (matu ) then
〈Create Right Singular Vector 14.19 〉

end if
if (matv ) then
〈Create Left Singular Vectors 14.24 〉

end if
〈Make Bidiagonal Matrix 14.32 〉

return
end

[svd.hweb] This module is used to copy the array A into array U for all subsequent manipulations.

〈Copy the Array 14.1 〉 ≡
do i = 1, m

do j = 1, n
U(i, j) = A(i, j)

end do
end do

This code is used in section 14.

[svd.hweb] These are the variables used only in this subroutine. I wanted to use the lower case ‘L’ but it
is just too much like a one. Thus, is used el.

〈Subroutine svd local variables 14.2 〉 ≡
integer i, j, k, el , nm , its
real∗8 c, f , g, h, s, x, y, z, scale , anorm
real∗8 zero , one , two
parameter (zero = 0.0 · 100D, one = 1.0 · 100D, two = 2.0 · 100D)

This code is used in section 14.
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[svd.hweb] This module sets the initial values of ierr , g, scale and anorm to zero. The variable ierr is
used to indicate that the matrix is non-singular, scale is the value used to scale the original array and anorm
is used to keep track of the largest element in the diagonal or super diagonal. At first glance it appears
redundant to initialize g and scale , but that is not the case.

〈Set Initial Values 14.3 〉 ≡
ierr = 0
g = 0.0
scale = 0.0
anorm = 0.0

This code is used in section 14.

[svd.hweb] Householder reduction to bidiagonal form. Householder reduction must first do a column
transformation and then a row transformation repeating these steps until the matrix is bidiagonal.

〈Do Householder Reduction 14.4 〉 ≡
do i = 1, n
〈Transform by Column 14.5 〉
〈Transform by Row 14.11 〉

end do

This code is used in section 14.

[svd.hweb] The transformations of the column values is done in this module. The transforming matrix
U , form the text, is not really created and the transformation is done so to say in place. First the array u
values are scaled by a factor equal to the sun of the absolute values of all the values in the column being
transformed. This value is stored in scale and will be used to restore the values once the transformation is
completed. The variable l is used as a holding variable to start loops at the ith plus 1 value in the array.

〈Transform by Column 14.5 〉 ≡
el = i + 1
rv1 (i) = scale ∗ g
〈Reset Zeros 14.18 〉
if (i ≤ m) then
〈Calculate column scale factor 14.6 〉
if (scale 6= zero) then
〈Scale column 14.7 〉
〈Prepare column transformation values 14.8 〉
if (i 6= n) then
〈Apply column transform 14.9 〉

end if
〈Restore column values 14.10 〉

end if
end if

This code is used in section 14.4.
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[svd.hweb] The scaling factor scale is just the positive sum of the absolute values of the column entries
from i, the count of the transformation pair that is being done at the moment, to m the total number of
columns.

〈Calculate column scale factor 14.6 〉 ≡
do k = i, m

scale = scale + abs (U(k, i))
end do

This code is used in section 14.5.

[svd.hweb] This module scales the column by scale and then totals the square of the scaled values in the
column from i to m to be used in the calculation of the length of the vector.

〈Scale column 14.7 〉 ≡
do k = i, m

U(k, i) = U(k, i) / scale
s = s + U(k, i)2

end do

This code is used in section 14.5.

[svd.hweb] This module calculates the value that the current column components will be multiplied by
to get the value of the component in the column being transformed. The variable f is just the value of the
diagonal entry in the column being transformed, g is the calculated length of the vector. To insure that the
sign of g is proper this is done within a call to the intrinsic function sign . First the squared values of the
entries is accumulated in s. The call to sqrt , using s as its parameter, is used as the first parameter in the
call to sign . The sign of the value that is returned from sign is dictated by the sign of the entry U(i, i).
Recall that the transforming matrix U is only theoretically calculated by the formula

Ut = I − βutu
T
t , t = 1, . . . n,

Where t is the number of the column transformation being done and n is the number of columns in the
matrix.

〈Prepare column transformation values 14.8 〉 ≡
f = U(i, i)
g = −sign (sqrt (s), f)
h = f ∗ g − s
U(i, i) = f − g

This code is used in section 14.5.
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[svd.hweb] The transformation is applied to the existing values of the matrix in this module. remember
that these transformations are performed in place, none of the matrices talked about in the text are actually
formed.

〈Apply column transform 14.9 〉 ≡
do j = el , n

s = zero
do k = i, m

s = s + U(k, i) ∗ U(k, j)
end do
f = s / h
do k = i, m

U(k, j) = U(k, j) + f ∗ U(k, i)
end do

end do

This code is used in section 14.5.

[svd.hweb] This module uses the scaling factor scale to restore the values in the matrix to their prescaled
values.

〈Restore column values 14.10 〉 ≡
do k = i, m

U(k, i) = scale ∗ U(k, i)
end do

This code is used in section 14.5.

[svd.hweb] This is the same process as above except that transformations are applied to the rows to
introduce zeros into the matrix above the superdiagonal.

〈Transform by Row 14.11 〉 ≡
w(i) = scale ∗ g
〈Reset Zeros 14.18 〉
if (i ≤ m ∧ i 6= n) then
〈Calculate row scale factor 14.12 〉
if (scale 6= zero) then
〈Scale row 14.13 〉
〈Prepare row transformation values 14.14 〉
if (i 6= m) then
〈Apply row transformation 14.15 〉

end if
〈Restore row values 14.16 〉

end if
end if
〈Set anorm 14.17 〉

This code is used in section 14.4.
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[svd.hweb] This module calculates the scaling factor for the row vector.

〈Calculate row scale factor 14.12 〉 ≡
do k = el , n

scale = scale + abs (U(i, k))
end do

This code is used in section 14.11.

[svd.hweb] This module scales the row.

〈Scale row 14.13 〉 ≡
do k = el , n

U(i, k) = U(i, k) / scale
s = s + U(i, k)2

end do

This code is used in section 14.11.

[svd.hweb] This module calculates the transformation values.

〈Prepare row transformation values 14.14 〉 ≡
f = U(i, el )
g = −sign (sqrt (s), f)
h = f ∗ g − s
U(i, el ) = f − g
do k = el , n

rv1 (k) = U(i, k) / h
end do

This code is used in section 14.11.

[svd.hweb] This module applies the transform to the row.

〈Apply row transformation 14.15 〉 ≡
do j = el , m

s = zero
do k = el , n

s = s + U(j, k) ∗ U(i, k)
end do
do k = el , n

U(j, k) = U(j, k) + s ∗ rv1 (k)
end do

end do

This code is used in section 14.11.
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[svd.hweb] This module restores the row components to their unscaled values.

〈Restore row values 14.16 〉 ≡
do k = el , n

U(i, k) = scale ∗ U(i, k)
end do

This code is used in section 14.11.

[svd.hweb] This module places the value of the largest component in anorm

〈Set anorm 14.17 〉 ≡
anorm = max1 (anorm , abs (w(i)) + abs (rv1 (i)))

This code is used in section 14.11.

[svd.hweb] The variables s, g end and scale are as a group set to zero several times during the process of
householder reduction so I have put that process in a separate module.

〈Reset Zeros 14.18 〉 ≡
g = zero
s = zero
scale = zero

This code is used in sections 14.5 and 14.11.

[svd.hweb] If matv is set to true the right singular vector array is wanted and this module is used to
initialize its components so that it can be correctly calculated when doing the QR reduction on the bidiagonal
matrix. Accumulation of values is sort of reverse engineered from the computed values of the singular values.
This is why the inner loop goes from n down to 1.

〈Create Right Singular Vector 14.19 〉 ≡
do i = n, 1, −1

if (i 6= n) then
if (g 6= zero) then
〈 right double division 14.20 〉
〈 set matrix V values 14.21 〉
〈 zero V off-diagonal elements 14.22 〉

end if
〈 zero V off-diagonal elements 14.22 〉

end if
〈 set matrix V diagonal values 14.23 〉

end do

This code is used in section 14.
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[svd.hweb] Double division is used to avoid underflow.

〈 right double division 14.20 〉 ≡
do j = el , n

V (j, i) = (U(i, j) / U(i, el )) / g
end do

This code is used in section 14.19.

[svd.hweb] This module establishes the initial values of the right singular vectors. These values are then
used by the QR transformation process to compute the final values of the right singular vector.

〈 set matrix V values 14.21 〉 ≡
do j = el , n

s = zero
do k = el , n

s = s + U(i, k) ∗ V (k, j)
end do
do k = el , n

V (k, j) = V (k, j) + s ∗ V (k, i)
end do

end do

This code is used in section 14.19.

[svd.hweb] The off-diagonal values are set to zero where the value of the calculated superdiagonal is equal
to zero and in all columns and rows > m.

〈 zero V off-diagonal elements 14.22 〉 ≡
do j = el , n

V (i, j) = zero
V (j, i) = zero

end do

This code is used in section 14.19.

[svd.hweb] The value of the diagonal are set to 1.0.

〈 set matrix V diagonal values 14.23 〉 ≡
V (i, i) = one
g = rv1 (i)
el = i

This code is used in section 14.19.
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[svd.hweb] If matu is set to true the left singular vector array is wanted and this module is used to initialize
its components so that it can be correctly calculated when doing the QR reduction on the bidiagonal matrix.
Accumulation of values is sort of reverse engineered from the computed values of the singular values. This
is why the inner loop goes from mn down to 1. The value of mn is the minimum of the extents of A.

〈Create Left Singular Vectors 14.24 〉 ≡
mn = min (m, n)
do i = mn , 1, −1
〈 set left loop initial values 14.25 〉
if (i 6= n) then
〈Set a row of U to zero 14.26 〉

end if
if (g 6= zero) then

if (i 6= mn ) then
〈 set matrix U values 14.28 〉

end if
〈 scale matrix U columns 14.30 〉

else
〈 zero matrix U column values 14.27 〉

end if
〈final diagonal value 14.31 〉

end do

This code is used in section 14.

[svd.hweb] This module establish the initial values used in calculating the values to be

〈 set left loop initial values 14.25 〉 ≡
el = i + 1
g = w(i)

This code is used in section 14.24.

[svd.hweb] Initially the values of the row components for j > m.

〈Set a row of U to zero 14.26 〉 ≡
do j = el , n

U(i, j) = zero
end do

This code is used in section 14.24.

[svd.hweb] Initially the values of the column components for j ≤ m for all singular values equal to zero.

〈 zero matrix U column values 14.27 〉 ≡
do j = i, m

U(j, i) = zero
end do

This code is used in section 14.24.
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[svd.hweb] This module establishes the initial values of the left singular vectors. These values are then
used by the QR transformation process to compute the final values of the left singular vector.

〈 set matrix U values 14.28 〉 ≡
do j = el , n

s = zero
do k = el , m

s = s + U(k, i) ∗ U(k, j)
end do
〈 left double division 14.29 〉
do k = i, m

U(k, j) = U(k, j) + f ∗ U(k, i)
end do

end do

This code is used in section 14.24.

[svd.hweb] This double division should prevent underflow in some cases.

〈 left double division 14.29 〉 ≡
f = (s / U(i, i)) / g

This code is used in section 14.28.

[svd.hweb] The values of U are scaled by g which is set equal to the calculated singular values.

〈 scale matrix U columns 14.30 〉 ≡
do j = i, m

U(j, i) = U(j, i) / g
end do

This code is used in section 14.24.

[svd.hweb] One is added to all calculated left singular vector values.

〈final diagonal value 14.31 〉 ≡
U(i, i) = U(i, i) + one

This code is used in section 14.24.

[svd.hweb] Diagonalization of the bidiagonal form for k=n step -1 until 1 do

〈Make Bidiagonal Matrix 14.32 〉 ≡
do k = n, 1, −1

its = 0
〈 test for splitting 14.33 〉
〈 test for convergence 14.36 〉

end do

This code is used in section 14.
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[svd.hweb] Test for splitting. for el = k step -1 until 1 do rv1 (1) is always zero, so there is no exit through
the bottom of the loop

〈 test for splitting 14.33 〉 ≡
100: el = k

test split = T
do while (test split )

test split = abs (rv1 (el )) + anorm 6= anorm
test split = test split ∧ abs (w(el − 1)) + anorm 6= anorm
el = el − 1
test split = test split ∧ el ≥ 1

end do
el = el + 1
if (abs (rv1 (el )) + anorm 6= anorm ) then
〈 cancel rv1 14.34 〉

end if

This code is used in section 14.32.

[svd.hweb] Cancellation of rv1 (el ) if el > 1

〈 cancel rv1 14.34 〉 ≡
c = zero
s = one
i = el
test conv = i ≤ k
do while (test conv )

f = s ∗ rv1 (i)
rv1 (i) = c ∗ rv1 (i)
if (abs (f) + anorm 6= anorm ) then

g = w(i)
h = sqrt (f ∗ f + g ∗ g)
w(i) = h
c = g / h
s = −f / h
if (matu ) then
〈 set matrix U bidiagonal columns 14.35 〉

end if
end if
i = i + 1
test conv = i ≤ k ∧ (abs (f) + anorm 6= anorm )

end do

This code is used in section 14.33.
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[svd.hweb]

〈 set matrix U bidiagonal columns 14.35 〉 ≡
do j = 1, m

y = U(j, el − 1)
z = U(j, i)
U(j, el − 1) = y ∗ c + z ∗ s
U(j, i) = −y ∗ s + z ∗ c

end do
〈 test for convergence 14.36 〉

This code is used in section 14.34.

[svd.hweb] test for convergence

〈 test for convergence 14.36 〉 ≡
z = w(k)
if (el ≡ k) then
〈make eigenvalue positive 14.37 〉

else
if (its ≡ 30) then

ierr = k
return

end if
〈 calculate shift for 2 by 2 minor 14.39 〉
〈do QR transform 14.40 〉

end if

This code is used in sections 14.32 and 14.35.

[svd.hweb] w(k) is made non-negative

〈make eigenvalue positive 14.37 〉 ≡
if (z < zero) then

w(k) = −z
if (matv ) then
〈 change sign of matrix V columns 14.38 〉

end if
end if

This code is used in section 14.36.

[svd.hweb]

〈 change sign of matrix V columns 14.38 〉 ≡
do j = 1, n

V (j, k) = −V (j, k)
end do

This code is used in section 14.37.
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[svd.hweb] Shift from bottom 2 by 2 minor.

〈 calculate shift for 2 by 2 minor 14.39 〉 ≡
its = its + 1
x = w(el )
y = w(k − 1)
g = rv1 (k − 1)
h = rv1 (k)
f = ((y − z) ∗ (y + z) + (g − h) ∗ (g + h)) / (two ∗ h ∗ y)
g = sqrt (f ∗ f + one )
f = ((x− z) ∗ (x + z) + h ∗ (y / (f + sign (g, f))− h)) / x

This code is used in section 14.36.

[svd.hweb] Next QR transformation

〈do QR transform 14.40 〉 ≡
c = one
s = one
do i = el , k − 1
〈 calculate QR transform coefficients 14.41 〉
if (matv ) then
〈 set eigenvector matrix V values 14.42 〉

end if
〈 calculate rotation values 14.43 〉
if (matu ) then
〈 set eigenvector matrix U values 14.44 〉

end if
end do
rv1 (el ) = zero
rv1 (k) = f
w(k) = x
goto 100

This code is used in section 14.36.
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[svd.hweb]

〈 calculate QR transform coefficients 14.41 〉 ≡
g = rv1 (i + 1)
y = w(i + 1)
h = s ∗ g
g = c ∗ g
z = sqrt (f ∗ f + h ∗ h)
rv1 (i) = z
c = f / z
s = h / z
f = x ∗ c + g ∗ s
g = −x ∗ s + g ∗ c
h = y ∗ s
y = y ∗ c

This code is used in section 14.40.

[svd.hweb]

〈 set eigenvector matrix V values 14.42 〉 ≡
do j = 1, n

x = V (j, i)
z = V (j, i + 1)
V (j, i) = x ∗ c + z ∗ s
V (j, i + 1) = −x ∗ s + z ∗ c

end do

This code is used in section 14.40.

[svd.hweb] Rotations can be arbitrary if z ≡ zero .

〈 calculate rotation values 14.43 〉 ≡
z = sqrt (f ∗ f + h ∗ h)
w(i) = z
if (z 6= zero) then

c = f / z
s = h / z

end if
f = c ∗ g + s ∗ y
x = −s ∗ g + c ∗ y

This code is used in section 14.40.
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[svd.hweb]

〈 set eigenvector matrix U values 14.44 〉 ≡
do j = 1, m

y = U(j, i)
z = U(j, i + 1)
U(j, i) = y ∗ c + z ∗ s
U(j, i + 1) = −y ∗ s + z ∗ c

end do

This code is used in section 14.40.

15 Modules that change: the ODEs

The modules that may need changing for different sets of differential equations or because of the number of
of boundary conditions. The parameters are set in module 14. This module is included in the source for
the linear equation solver. The differential equations are codes from here to the end.

If someone is using this in production environments, it is recommended that this major section be an
include file. The FWEB allows this, but we have included this code directly to ease the distribution of the
sources.

The differential equation that is being solved was presented in modules 2 and 8.

For linear problems there is one set of equations and the else clause of the if −then − else can be
eliminated. Common calculations for forcing functions or variable coefficients are placed in the first part of
the conditional. For nonlinear ODEs, the if −then clause also contains the base equations and the else
clause contains the linearized equations. These linearized equations can be put onto separate processors.
Each processor would process the recurrence equations in a loop on k. Further, these are nested in the loop
through the particular solutions, a loop on i, and each i > 0 is what can be assigned to separate processors.

〈Calculate the k-th term of the power series 15 〉 ≡
if (i ≡ 0 | scoring > 0) then
〈Do common calculations 15.1 〉

end if
PS (k, 1, i) = PS (k − 1, 2, i) / (k)
PS (k, 2, i) = (−xi ∗ PS (k − 1, 1, i)−mu ∗ PS (k − 1, 2, i) + sn (k − 1)) / (k)

This code is used in section 5.3.

These calculations are independent of which solution of the ODE it is. These are usually the forcing
functions or variable coefficients that need not be calculated more than once.

〈Do common calculations 15.1 〉 ≡
call ps trig (t ps , k − 1, sn , cs )

This code is used in section 15.
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We need to declare the variable for µ and ξ. The series sn and cs represent the independent variable t
and the sine and cosine of t, respectively.

〈Quasi’s local variables 4.1.7 〉 +≡
floating mu , xi , sn (0 : m ), cs (0 : m )
parameter (mu = 0.05, xi = 1.0)

Sometimes we declare additional variables in coding the differential equations. These often need to be
initialized.

〈 Initialization of variables 4.1.10 〉 +≡

These variables may be dependent upon the center of expansion.

〈Set up for current center of expansion 5.2 〉 +≡
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16 INDEX

A: 12.1.3, 14.
a: 8.1, 8.1.1, 9.0.2, 9.0.8, 9.0.12, 9.0.16, 9.0.20,

9.0.24, 9.1.2.
A 4 : 12.1.4, 13, 13.0.1, 13.0.2, 13.0.4.
A 4 t A 4 i : 12.1.4, 13.0.3, 13.0.4.
abs : 4.1.17, 5.1.6, 5.2.3, 5.6.7, 12.1.9, 14.6, 14.12,

14.17, 14.33, 14.34.
accuracy : 4.1.8, 5.0.6, 5.2.3.
All the particular solutions: 5.8.3.
anorm : 14.2, 14.3, 14.17, 14.33, 14.34.
Application dependencies: 5.1.6, 5.2.1, 5.2.3, 5.4.2,

5.4.3, 5.5.2, 5.5.3, 5.5.9, 5.7, 15, 15.1, 15.2, 15.3,
15.4.

At the end: 5.8.2.
at bc : 4.1.9, 5.2, 5.4.4, 5.5, 5.5.5.
at end : 4.1.1, 4.1.9, 5.2, 5.4.5, 5.5, 5.6.1, 5.6.2.
at external : 4.1.9, 5.2, 5.4.3, 5.5, 5.5.3.
at limit : 4.1.1, 4.1.9, 5.2, 5.4.1, 5.5.
at output : 4.1.9, 5.2, 5.4.2, 5.5, 5.5.2.

b: 9.0.2.
beta : 4.1.11.
Boundary condition: 2, 2.3, 4.1.3, 4.1.6, 4.1.7, 5.0.1,

5.0.7, 5.0.8, 5.0.9, 5.1, 5.1.2, 5.4, 5.4.4, 5.5, 5.5.3,
5.5.5, 5.5.6, 5.5.9.

bv : 4.1.6, 5.0.7, 5.0.8, 5.5.5.

C: 4.1.11.
c: 6.1, 9.1.2, 14.2.
Coef : 4.1.11.
col k : 12.1.3, 12.1.9, 12.1.10.
col kk : 12.1.3, 12.1.10, 12.1.11, 12.1.12.
col ptr : 12.1.3, 12.1.8, 12.1.9, 12.1.10, 12.1.11,

12.1.12, 12.1.13, 12.1.14, 12.1.15, 13.0.1, 13.0.4,
13.0.5.

cols ls : 12.1.3, 13, 13.0.2, 13.0.3, 13.0.6.
const : 1, 4.1.12, 5.0.6, 5.0.8, 5.1.3, 5.1.6, 5.2.3,

5.6.2, 5.6.3, 5.6.4, 5.6.6, 5.6.7, 9.0.17, 9.0.26,
12.1.11, 12.1.12.

Constraint: 4.1.6, 5.1, 5.5.5, 5.5.6.
convergence : 4.1.8, 5.0.6, 5.6.7.
Convergence: 5.6.7.
convergence count : 4.1.7.
cos : 9.1.3.
count exact bv s : 5.0.7, 5.0.9, 5.1, 5.5.6, 5.6, 5.6.4.
CRAY : 1.
cs : 15.1, 15.2.
cTc : 12.1.13.

d: 9.0.5.
debug : 13.0.6.

DP : 4.1.11, 5.4.6, 5.5.8.
d0 : 1.

e: 9.0.8.
el : 14.2, 14.5, 14.9, 14.12, 14.13, 14.14, 14.15,

14.16, 14.20, 14.21, 14.22, 14.23, 14.25, 14.26,
14.28, 14.33, 14.34, 14.35, 14.36, 14.39, 14.40.

error norm : 4.1.8, 5.0.6, 5.0.8.
evaluate derivative : 5.4.4, 5.4.6, 5.4.7.
evaluate function : 5.4.1, 5.4.2, 5.4.4, 5.4.5, 5.4.6,

5.4.7.
exact bc : 4.1.6, 5.0.7, 5.0.8, 5.5.6, 5.5.7, 5.5.8, 5.8.4.
exact iv : 4.1.13, 5.0.10, 5.0.12, 5.1.4, 5.1.5, 5.6.2,

5.6.5, 5.6.6.
exp : 4.1.17, 5.2.3, 9.0.9.
External considerations: 5.2.2, 5.4.3.

f : 14.2.
file: 4.1.10, 5.0.3.
File handling is system dependent: 5.0.3.
final : 4.1.5, 5.6, 5.6.1, 5.6.4, 12.1.2.
float : 5.2.3.
floating: 1.
format a : 4.1.15, 4.1.16, 5.0.3, 5.0.6, 5.0.7, 5.0.10.
format bc : 4.1.15, 4.1.16, 5.0.7, 5.0.8.
format C : 4.1.15, 4.1.16, 5.6, 5.8.1, 5.8.4.
format iv : 4.1.15, 4.1.16, 5.0.10.
format matrix : 12.1.3, 12.1.7, 13.1.
format pivot : 12.1.3, 12.1.7, 12.1.11.
format solution : 12.1.3, 12.1.7.
format t y : 4.1.15, 4.1.16, 5.5.2, 5.8, 5.8.2, 5.8.3.
format t 0 : 4.1.15, 4.1.16, 5.8.

g: 14.2.
gj svd : 5.6.4, 12.1.1.
gjrwls : 4.1.5.

h: 14.2.

i: 4.1.7, 6.1, 9.0.2, 9.0.5, 9.0.8, 9.0.12, 9.0.16, 9.0.20,
9.0.24, 9.1.2, 12.1.3, 14.2.

i bc : 4.1.7, 5.0.7, 5.0.8, 5.1, 5.1.2, 5.4.4, 5.5.5, 5.5.6,
5.5.7, 5.5.8, 5.8.4.

i bc constraint : 5.1, 5.1.1, 5.5.6.
i bc observation : 5.1, 5.1.1, 5.5.6.
i bc row : 5.1, 5.1.1, 5.5.5, 5.5.6, 5.5.7, 5.5.8, 5.8.4.
i debug : 4.1.5, 5.0.3, 5.0.7, 5.5.1, 5.5.3, 5.6, 5.6.4,

5.8, 5.8.1, 5.8.2, 5.8.3, 5.8.4, 12.1, 12.1.1, 12.1.2,
12.1.11, 13.0.5, 13.0.6, 13.1.1.

i ls : 12.1.3, 13.0.1, 13.0.4.
i r : 4.1.14, 5.0.8.
i return : 4.1.7, 5.6.4, 12.1, 12.1.1, 12.1.2, 12.1.5,

12.1.6.
i s : 5.0.5, 5.0.7, 5.0.10.
i 0 : 4.1.14, 5.6.3.
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i 1 : 4.1.14, 5.6.3.
i 2 : 4.1.14, 5.6.3.
ierr : 12.1.3, 13, 13.0.6, 14, 14.3, 14.36.
in a number : 6.1.
index : 6.1.
Initial values for iter...: 5.8.
inverse problems: 8.1.1.
iteration : 4.1, 4.1.7, 5.6, 5.6.7, 5.8.
iteration max : 4.1, 4.1.5, 4.1.7, 5.0.3, 5.6, 5.6.7,

5.8.
its : 14.2, 14.32, 14.36, 14.39.

j: 4.1.7, 12.1.3, 14.2.
j ls : 12.1.3, 13.0.1, 13.0.4.
jj : 4.1.7, 5.1.4, 5.1.6, 5.6.5, 5.6.6.

k: 4.1.7, 8.1, 8.1.1, 9.0.2, 9.0.5, 9.0.8, 9.0.12, 9.0.16,
9.0.20, 9.0.24, 9.1.2, 12.1.3, 14.2.

k m : 5.2.3, 5.2.4.
K n 0 : 4.1.8, 5.6.3, 5.6.4.
K n 1 : 4.1.8, 5.6.2, 5.6.3.
K n 2 : 4.1.8, 5.6.2, 5.6.3.
k 0 : 5.2.3, 5.2.4.
kk : 12.1.3, 12.1.12, 13.0.3.

len : 6.1.
length : 6.1.
line : 6.1.
line step : 4.1.8, 5.6.2, 5.6.3.
line step limit : 4.1.8, 5.0.6, 5.6.3.
log : 4.1.17, 5.2.3, 5.6.3, 9.0.13, 10.

m: 12.1.3, 14.
m : 4.1.3, 4.1.11, 4.1.12, 5.2.3, 5.3, 5.4.6, 5.8.1, 8.1,

8.1.1, 15.2.
matu : 14, 14.24, 14.34, 14.40.
matv : 14, 14.19, 14.37, 14.40.
max : 5.6.2, 5.6.5.
max beta : 4.1.8, 5.6.7.
max iv : 4.1.13, 5.0.10, 5.6.2, 5.6.5.
max ivp : 4.1.7, 5.1, 5.1.3, 5.1.4, 5.2, 5.3, 5.4.6,

5.5.5, 5.6, 5.6.1, 5.6.2, 5.6.4, 5.6.6, 5.6.7, 5.8,
5.8.1, 5.8.2, 5.8.3, 5.8.4.

max n : 4.1.3, 4.1.11, 4.1.13, 4.1.14, 12.1, 12.1.3,
12.1.4.

max n bc : 4.1.3, 4.1.6, 4.1.11, 12.1, 12.1.3, 12.1.4,
12.1.6, 12.1.8, 13.

max n p : 4.1.3, 4.1.11, 12.1, 12.1.3, 12.1.4, 12.1.6,
12.1.8.

max row elimination : 12.1.3, 12.1.8, 12.1.12, 13.1.
max row pivot select : 12.1.3, 12.1.8, 12.1.9.
max shoot : 4.1.3, 4.1.14.
max1 : 14.17.
min : 4.1.17, 5.4, 5.6.2, 5.6.5, 14.24.

min iv : 4.1.13, 5.0.10, 5.6.2, 5.6.5.
mn : 14, 14.24.
mod : 9.0.18, 9.0.26.
mu : 15, 15.2.
Multiple Shooting: 5.5.3.

n: 12.1.2, 14.
n : 4.1.3, 4.1.4, 5.0.3, 5.0.10, 5.0.12, 5.1.4, 5.1.5,

5.2, 5.4.6, 5.5.2, 5.6.2, 5.6.5, 5.6.6, 5.8, 5.8.1.
n bc : 4.1.3, 4.1.4, 4.1.7, 5.0.3, 5.0.8, 5.1.2, 5.6,

5.6.1, 5.6.2, 5.6.4.
n bc in : 4.1.3, 4.1.4, 4.1.7, 5.0.3, 5.0.7.
n ode : 5.0.3, 5.0.4, 5.5.2, 5.8.1, 5.8.2.
n out : 4.1.7, 5.5.2, 5.8.3.
n parameters : 5.0.3, 5.0.4.
n ps : 4.1.1, 4.1.2, 4.1.7, 5.0.3, 5.0.12, 5.1, 5.6.4.
nint : 5.6.3.
nm : 14, 14.2.
none: 4, 6.1, 8.1, 8.1.1, 9.0.1, 9.0.4, 9.0.7, 9.0.11,

9.0.15, 9.0.20, 9.0.24, 9.1.1, 12.1.1, 14.
normal numbers : 4.1.9, 4.1.10, 5.0.8.
num rows A: 12.1.1, 12.1.2, 12.1.6, 12.1.8, 13,

13.0.1, 13.0.4.
number exact : 12.1, 12.1.1, 12.1.2, 12.1.8, 13.1.
number of fields : 4.1.5, 5.0.3, 5.0.6, 6.1.

Observation: 4.1.6, 5.1, 5.5.5, 5.5.6.
observed : 4.1.11.
ODE: 15.
one : 14.2, 14.23, 14.31, 14.34, 14.39, 14.40.
output flag : 4.1.15, 4.1.16, 5.8.
over : 12.1.3, 12.1.15.

P : 4.1.11.
p: 9.0.20.
Parallel considerations: 4.1.1, 4.1.2, 5.3, 5.4.6,

5.6.4.
perturbation : 4.1.14, 5.1.4, 5.6.6.
pivot value : 12.1.3, 12.1.9, 12.1.11.
Power series: 15.
Power series coefficients...: 5.8.1.
predicted : 4.1.11.
PS : 4.1.11, 5.2, 5.2.3, 5.4.6, 5.8.1, 15.
ps div : 4.1.12, 4.1.17, 9.0.4, 9.0.6, 9.0.14, 10.
ps eval : 5.4.6, 8.1.
ps eval d : 5.4.6, 8.1.1.
ps exp : 4.1.12, 4.1.17, 9.0.7, 9.0.8, 9.0.9, 9.0.10.
ps ln : 9.0.11, 9.0.12, 9.0.13, 9.0.14.
ps mult : 4.1.12, 4.1.17, 9.0.1, 9.0.3, 9.0.17, 10.
ps pwr : 4.1.12, 4.1.17, 9.0.19, 9.0.21, 9.0.22, 9.0.23.
Ps Quasi : 4.
ps shift : 10.
ps sqr : 4.1.12, 4.1.17, 9.0.15, 9.0.17, 9.0.18, 9.0.23.
ps sqrt : 4.1.12, 4.1.17, 9.0.23, 9.0.25, 9.0.26.
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ps trig : 9.1.1, 15.1.

q: 4.1.6, 9.0.5.
quasilinearization : 4.

r: 9.0.20, 9.0.24.
random count : 4.1.3, 4.1.9, 4.1.10, 5.0.8.
random numbers : 4.1.9, 4.1.10.
random shift : 4.1.5, 5.0.3, 5.0.8.
real: 1.
reciprocal : 10.
Regression analysis: 7.
Regression Analysis: 2.
row k : 12.1.3, 12.1.9, 12.1.10.
row kk : 12.1.3, 12.1.10, 12.1.11, 12.1.12.
row ptr : 12.1.3, 12.1.8, 12.1.9, 12.1.10, 12.1.12,

12.1.13, 12.1.14, 12.1.15, 13.0.1, 13.0.4, 13.0.5.
rows ls : 12.1.3, 13, 13.0.2, 13.0.6.
RS/6000: 1.
rv1 : 14, 14.5, 14.14, 14.15, 14.17, 14.23, 14.33,

14.34, 14.39, 14.40, 14.41.

s: 9.1.2, 14.2.
Saving: 5.8.4.
scale : 14.2, 14.3, 14.5, 14.6, 14.7, 14.10, 14.11,

14.12, 14.13, 14.16, 14.18.
scoring : 4.1, 4.1.7, 5.1, 5.6, 5.8, 15.
scoring max : 4.1.7.
scratch : 5.0.3, 5.0.5, 5.0.6, 5.0.7, 5.0.10.
sigma : 12.1.4, 13, 13.0.2, 13.0.3, 13.0.6.
sign : 14.8, 14.14, 14.39.
sin : 9.1.3.
Small is 0.1: 5.1.6.
sn : 3.2, 15, 15.1, 15.2.
sqrt : 5.6.6, 9.0.25, 14.8, 14.14, 14.34, 14.39, 14.41,

14.43.
stanal : 12.
Statistics: 7.
Stub: 5.5.4.
SUN : 1.
svd : 12, 12.1.4, 13, 14.

t: 4.1.9, 8.1, 8.1.1.
t bc : 4.1.6, 5.0.7, 5.0.8, 5.1.2, 5.4.4.
t bc i : 4.1.9, 5.1.2, 5.4, 5.4.4, 5.5.5, 5.8.4.
t center : 4.1.8, 4.1.9, 5.2, 5.2.1, 5.2.3, 5.4.1, 5.4.2,

5.4.3, 5.4.4, 5.4.5, 5.8.1.
t external : 4.1.8, 4.1.9, 5.2.2, 5.4, 5.4.3, 5.5.3.
t limit : 4.1.8, 4.1.9, 5.2.2, 5.2.3, 5.4, 5.4.1.
t output : 4.1.8, 4.1.9, 5.1, 5.4, 5.4.2, 5.5.2.
t output delta : 4.1.8, 5.0.6, 5.5.2.
t output start : 4.1.8, 5.0.6, 5.1, 5.5.2, 5.6.7.
t ps : 4.1.11, 4.1.12, 5.2.1, 15.1.
t start : 4.1.8, 5.0.6, 5.0.8, 5.1, 5.1.4, 5.5.2, 5.6.7.

t stop : 4.1.8, 5.0.6, 5.0.7, 5.0.8, 5.4, 5.4.5, 5.6.7.
tau : 4.1.8, 4.1.9, 5.4.1, 5.4.2, 5.4.3, 5.4.4, 5.4.5,

5.4.6, 5.5.1.
tau ok : 5.2.3, 5.2.4.
test conv : 14, 14.34.
test split : 14, 14.33.
The governing equations: 15.
the_subs.hweb: 4.1.17.
two : 14.2, 14.39.

U : 12.1.4, 14.
u: 9.0.5, 9.0.12.

V : 12.1.4, 14.
v: 8.1, 8.1.1.
value : 12.1.3, 12.1.12, 12.1.14.
VAX : 1.

w: 14.
wasted : 4.1.9, 4.1.12.
weight : 4.1.8, 5.0.6, 5.5.7, 5.5.8.
while : 4.1, 4.1.1, 5.1.4, 5.2.3, 5.4.4, 5.5.5, 6.1,

12.1.1, 12.1.15, 14.33, 14.34.
work : 12.1.4, 13, 13.0.2.

x: 14.2.
xi : 15, 15.2.
xlf: 1.

y: 14.2.
y change : 4.1.14, 5.1.5, 5.6.2, 5.6.5, 5.6.6.
y change max : 4.1.8, 5.0.6, 5.6.5.
y change norm : 4.1.14, 5.6.5, 5.6.6.
y initial : 4.1.14, 5.0.10, 5.1.4, 5.1.5, 5.1.6, 5.6.2,

5.6.5.
y input : 4.1.13, 5.0.10, 5.1.4.

z: 14.2.
zero : 14.2, 14.5, 14.9, 14.11, 14.15, 14.18, 14.19,

14.21, 14.22, 14.24, 14.26, 14.27, 14.28, 14.34,
14.37, 14.40, 14.43.

32-bit 64-bit: 1, 9.0.17, 9.0.26.
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〈Apply column transform 14.9 〉 Used in section 14.5.

〈Apply row transformation 14.15 〉 Used in section 14.11.

〈Are we at the limit of accuracy of the power series 5.4.1 〉 Used in section 5.4.

〈Assign i bc row based on constraint vs. observation 5.5.6 〉 Used in section 5.5.5.

〈Calculate column scale factor 14.6 〉 Used in section 14.5.

〈Calculate row scale factor 14.12 〉 Used in section 14.11.

〈Calculate the line step 5.6.3 〉 Used in section 5.6.2.

〈Calculate the new initial value estimates 5.6.1 〉 Used in section 5.6.

〈Calculate the norm of the change in the initial values 5.6.6 〉 Used in section 5.6.5.

〈Calculate the power series coefficients, recurrence 5.3 〉 Used in section 4.1.1.

〈Calculate the k-th term of the power series 15 〉 Used in section 5.3.

〈Change initial values because we are at a shooting point 5.5.4 〉 Used in section 5.5.3.

〈Check for an odd number of terms and update ps sqr 9.0.18 〉 Used in section 9.0.15.

〈Check for convergence of the initial values 5.6.7 〉 Used in section 5.6.1.

〈Check for non-fatal and fatal sizes of A 12.1.6 〉 Used in section 12.1.5.

〈Check parameters and initialize variables for gj svd 12.1.5, 12.1.7, 12.1.8 〉 Used in section 12.1.1.

〈Check to see if this is last boundary condition 5.1.2 〉 Used in sections 5.1 and 5.5.5.

〈Check to see if we have integrated far enough 5.4.5 〉 Used in section 5.4.

〈Compute ps div result 9.0.6 〉 Used in section 9.0.4.

〈Compute ps mult result 9.0.3 〉 Used in section 9.0.1.

〈Compute ps sqr sum 9.0.17 〉 Used in section 9.0.15.

〈Copy the Array 14.1 〉 Used in section 14.

〈Copy the inverse of the normal matrix into A 13.0.4 〉 Used in section 13.

〈Copy the least squares part of A to A 4 13.0.1 〉 Used in section 13.

〈Create Left Singular Vectors 14.24 〉 Used in section 14.

〈Create Right Singular Vector 14.19 〉 Used in section 14.

〈Debug output? All particular solutions 5.8.3 〉 Used in section 5.5.2.

〈Debug output? At the end 5.8.2 〉 Used in section 5.7.

〈Debug output? Initial values 5.8 〉 Used in section 5.1.

〈Debug output? Power series coefficients 5.8.1 〉 Used in section 5.3.

〈Debug output? Reducing k 13.1.1 〉 Used in section 12.1.1.

〈Debug output? Saving 5.8.4 〉 Used in section 5.5.5.

〈Declare variables for gj svd 12.1.2, 12.1.3, 12.1.4 〉 Used in section 12.1.1.

〈Declare variables for ps pwr 9.0.20 〉 Used in section 9.0.19.

〈Declare ps div variables 9.0.5 〉 Used in section 9.0.4.

〈Declare ps exp variables 9.0.8 〉 Used in section 9.0.7.

〈Declare ps ln variables 9.0.12 〉 Used in section 9.0.11.

〈Declare ps mult variables 9.0.2 〉 Used in section 9.0.1.

〈Declare ps sqrt variables 9.0.24 〉 Used in section 9.0.23.

〈Declare ps sqr variables 9.0.16 〉 Used in section 9.0.15.

〈Declare ps trig variables 9.1.2 〉 Used in section 9.1.1.

〈Determine τ and advance t 5.4 〉 Used in section 4.1.1.

〈Determine the limit of numeric convergence 5.2.2, 5.2.3 〉 Used in section 4.1.1.

〈Divide Row by Max element 12.1.11 〉 Used in section 12.1.1.

〈Do Householder Reduction 14.4 〉 Used in section 14.

〈Do common calculations 15.1 〉 Used in section 15.

〈Do the general case for ps trig 9.1.4 〉 Used in section 9.1.1.

〈Do the trivial case for ps trig 9.1.3 〉 Used in section 9.1.1.

〈End game processing 5.7 〉 Used in section 5.5.

〈End of forward integration 5.6 〉 Used in section 4.1.

〈Estimate the new initial values, to be revised 5.6.5 〉 Used in section 5.6.1.

〈Evaluate the power series 5.4.6 〉 Used in section 4.1.2.
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〈Find max pivot element 12.1.9 〉 Used in section 12.1.1.

〈Finish it up by back substitution 13.0.5 〉 Used in section 13.

〈 Initialization of variables 4.1.10, 4.1.12, 4.1.16, 15.3 〉 Used in section 4.

〈 Input alphanumeric information 5.0.2 〉 Used in section 5.0.1.

〈 Input boundary conditions 5.0.7, 5.0.8 〉 Used in section 5.0.1.

〈 Input formats 5.0.11 〉 Used in section 5.0.1.

〈 Input initial value estimates 5.0.10 〉 Used in section 5.0.1.

〈 Input parameters, estimates, and boundary conditions 5.0.1 〉 Used in section 4.

〈 Input integer parameters 5.0.3 〉 Used in section 5.0.1.

〈 Input real parameters 5.0.6 〉 Used in section 5.0.1.

〈 Is this the point of a boundary condition 5.4.4 〉 Used in section 5.4.

〈 Is this where an external event is 5.4.3 〉 Used in section 5.4.

〈 Iterate on the boundary value problem 4.1 〉 Used in section 4.

〈Make Bidiagonal Matrix 14.32 〉 Used in section 14.

〈Output the coefficient matrix 13.1 〉 Used in section 13.1.1.

〈Output the results, regularly 5.5.2 〉 Used in section 5.5.

〈Output the whole mess 13.0.6 〉 Used in section 12.1.1.

〈Perform any needed work for external reasons 5.5.3 〉 Used in section 5.5.

〈Perform appropriate multiplications by U and V 13.0.2, 13.0.3 〉 Used in section 13.

〈Perform in place reduction 12.1.12 〉 Used in section 12.1.1.

〈Perform the forward integration 4.1.1 〉 Used in section 4.1.

〈Perform the general case for ps exp 9.0.10 〉 Used in section 9.0.7.

〈Perform the general case for ps ln 9.0.14 〉 Used in section 9.0.11.

〈Perform the general case for ps pwr 9.0.22 〉 Used in section 9.0.19.

〈Perform the general case for ps sqrt 9.0.26 〉 Used in section 9.0.23.

〈Perform the line search part of scoring 5.6.2 〉 Used in section 5.6.

〈Perform the statistical analysis 7 〉 Used in section 5.6.1.

〈Perform the trivial case for ps exp 9.0.9 〉 Used in section 9.0.7.

〈Perform the trivial case for ps ln 9.0.13 〉 Used in section 9.0.11.

〈Perform the trivial case for ps pwr 9.0.21 〉 Used in section 9.0.19.

〈Perform the zero case for ps sqrt 9.0.25 〉 Used in section 9.0.23.

〈Permute the solution matrix into original form 12.1.13 〉 Used in section 12.1.1.

〈Perturb the initial value to ensure independence? 5.1.4 〉 Used in section 5.1.

〈Perturb the jj th element of this column 5.1.6 〉 Used in section 5.1.4.

〈Prepare column transformation values 14.8 〉 Used in section 14.5.

〈Prepare row transformation values 14.14 〉 Used in section 14.11.

〈Quasi’s input variables 4.1.4, 4.1.5, 4.1.6, 4.1.8, 4.1.13, 4.1.15, 5.0.4, 5.0.5, 5.2.4, 5.4.7 〉 Used in section 4.

〈Quasi’s local variables 4.1.7, 4.1.9, 4.1.11, 4.1.14, 4.1.17, 5.0.9, 5.1.1, 15.2 〉 Used in section 4.

〈Quasi’s parameters 4.1.3 〉 Used in section 4.

〈Reached the limit of this expansion 5.5.1 〉 Used in section 5.5.

〈Reduce the order of the problem, if possible 5.0.12 〉 Used in section 5.0.1.

〈Reset Zeros 14.18 〉 Used in sections 14.5 and 14.11.

〈Restore column values 14.10 〉 Used in section 14.5.

〈Restore row values 14.16 〉 Used in section 14.11.

〈Save the row of the coefficient matrix 5.5.5 〉 Used in section 5.5.

〈Scale column 14.7 〉 Used in section 14.5.

〈Scale row 14.13 〉 Used in section 14.11.

〈Set Initial Values 14.3 〉 Used in section 14.

〈Set a row of U to zero 14.26 〉 Used in section 14.24.

〈Set anorm 14.17 〉 Used in section 14.11.

〈Set initial values for scoring integrations 5.1.5 〉 Used in section 5.1.

〈Set up for current center of expansion 5.2, 5.2.1, 15.4 〉 Used in section 4.1.1.
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〈Set up for this iteration 5.1 〉 Used in section 4.1.

〈Should we output something 5.4.2 〉 Used in section 5.4.

〈Solve for the superposition coefficients 5.6.4 〉 Used in section 5.6.1.

〈Special boundary condition operators 5.5.9 〉 Used in section 5.5.5.

〈Store the element based upon the derivative 5.5.8 〉 Used in section 5.5.5.

〈Store the element based upon the solution vector 5.5.7 〉 Used in section 5.5.5.

〈Store the superposition identity in C 5.1.3 〉 Used in section 5.1.

〈Subroutine svd local variables 14.2 〉 Used in section 14.

〈Swap column and row pointers 12.1.10 〉 Used in section 12.1.1.

〈Swap rows in the augmented matrix 12.1.14 〉 Used in section 12.1.13.

〈The parallel forward integration parts 4.1.2 〉 Used in section 4.1.1.

〈This is the first observation, call svd for the rest 13 〉 Used in section 12.1.1.

〈Transform by Column 14.5 〉 Used in section 14.4.

〈Transform by Row 14.11 〉 Used in section 14.4.

〈Update the row pointers 12.1.15 〉 Used in section 12.1.13.

〈Use the result of the evaluation 5.5 〉 Used in section 4.1.2.

〈 calculate QR transform coefficients 14.41 〉 Used in section 14.40.

〈 calculate rotation values 14.43 〉 Used in section 14.40.

〈 calculate shift for 2 by 2 minor 14.39 〉 Used in section 14.36.

〈 cancel rv1 14.34 〉 Used in section 14.33.

〈 change sign of matrix V columns 14.38 〉 Used in section 14.37.

〈do QR transform 14.40 〉 Used in section 14.36.

〈final diagonal value 14.31 〉 Used in section 14.24.

〈 left double division 14.29 〉 Used in section 14.28.

〈make eigenvalue positive 14.37 〉 Used in section 14.36.

〈 right double division 14.20 〉 Used in section 14.19.

〈 scale matrix U columns 14.30 〉 Used in section 14.24.

〈 set eigenvector matrix U values 14.44 〉 Used in section 14.40.

〈 set eigenvector matrix V values 14.42 〉 Used in section 14.40.

〈 set left loop initial values 14.25 〉 Used in section 14.24.

〈 set matrix U bidiagonal columns 14.35 〉 Used in section 14.34.

〈 set matrix U values 14.28 〉 Used in section 14.24.

〈 set matrix V diagonal values 14.23 〉 Used in section 14.19.

〈 set matrix V values 14.21 〉 Used in section 14.19.

〈 test for convergence 14.36 〉 Used in sections 14.32 and 14.35.

〈 test for splitting 14.33 〉 Used in section 14.32.

〈 zero matrix U column values 14.27 〉 Used in section 14.24.

〈 zero V off-diagonal elements 14.22 〉 Used in section 14.19.

COMMAND LINE: "fweave psq".
WEB FILE: "psq.web".
CHANGE FILE: (none).
GLOBAL LANGUAGE: Fortran.


