C++ portability guide

mOozilla.org

The Mozilla
Organization
At A Glance
Feedback

Get Involved
Newsgroups
License Terms
Newsbot

Developer Docs
Roadmap
Projects
Ports
Module Owners
Hacking
Get the Source
Build It
Testing
Download
Report A Bug
Bugzilla
Bug Writing
Tools
View Source
Tree Status
New Checkins

Submit A Bug
FAQ
Search

C++ portability guide

version 0.7
by David Williams
27 March 1998

Updated and maintained by Scott Collins and Christopher Blizzard

What follows is a set of rules, guidelines, and tips that we have found to be useful in making C++ code portable
across many machines and compilers.

Thisinformation is the result of porting large amounts of code across about 25 different machines, and at least a
dozen different C++ compilers. Some of these things will frustrate you and make you want to throw your hands up
and say, ~"well, that's just a stupid compiler if it doesn't do <insert favorite C++ feature>." But thisisthe reality of
portable code. If you play by the rules, your code will seamlessly work on all of the Mozilla platforms and will be
easy to port to newer machines.

We will endeavor to keep the information up to date (for example, sometimes a new compiler revision will lift a
restriction). If you have updates on any of these tips, more information, more ideas, please forward them to
Christopher Blizzard or Scott Callins.

If you find code in Mozillathat violates any of these rules, please report it asabug. Y ou can use bonsai to find the
author.

C++ portability rules.

Don't use C++ templates. (*)
Don't use static constructors.

Don't use exceptions.

Don't use Run-time Type Information.

Don't use namespace facility.
nmai n() must beinaC++file.
Use the common denominator between members of a C/C++ compiler family.

Don't put C++ commentsin C code.

© O N Uk~ w0DNPRE

Don't put carriage returns in XP code.

'—\
©

Put anew line at end-of-file.

=
[N

. Don't put extratop-level semi-colonsin code.

=
N

. C++ filename extension is. cpp.

[
w

. Don't mix varargs and inlines.

H
s

Don't useinitializer lists with objects.

[EEN
o

. Always have adefault constructor.

=
(o2}

. Don't put constructors in header files.

=
~

. Be careful with inner-classes.

[
(o]

. Be careful of variable declarations that require construction or initialization.
. Make header files compatible with C and C++.

Be careful of the scoping of variables declared insidef or () statements.

. Declarelocd initialized aggregates as static.

. Expect complex inlines to be non-portable.

=
(e}

N
©

N
=

N
N

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (1 of 15) [10/1/2000 7:42:12 PM]

http://www.mozilla.org/
http://www.mozilla.org/
http://www.mozilla.org/
http://www.mozilla.org/mozorg.html
http://www.mozilla.org/feedback.html
http://www.mozilla.org/get-involved.html
http://www.mozilla.org/community.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/newsbot/
http://www.mozilla.org/docs/
http://www.mozilla.org/roadmap.html
http://www.mozilla.org/projects/
http://www.mozilla.org/ports/
http://www.mozilla.org/owners.html
http://www.mozilla.org/hacking/
http://www.mozilla.org/source.html
http://www.mozilla.org/build/
http://www.mozilla.org/quality/
http://www.mozilla.org/binaries.html
http://www.mozilla.org/quality/help/bug-form.html
http://www.mozilla.org/bugs/
http://www.mozilla.org/quality/bug-writing-guidelines.html
http://www.mozilla.org/tools.html
http://lxr.mozilla.org/seamonkey/
http://tinderbox.mozilla.org/showbuilds.cgi?tree=SeaMonkey
http://bonsai.mozilla.org/cvsquery.cgi?treeid=default&module=SeaMonkeyAll&branch=HEAD&branchtype=match&dir=&file=&filetype=match&who=&whotype=match&sortby=Date&hours=2&date=day&mindate=&maxdate=&cvsroot=%2Fcvsroot
http://bugzilla.mozilla.org/
http://www.mozilla.org/faq.html
http://www.mozilla.org/search.html
mailto:djw@djw.org
mailto:scc@netscape.com
mailto:blizzard@mozilla.org
mailto:blizzard@mozilla.org
mailto:scc@netscape.com
http://www.mozilla.org/bugs/report.html
http://www.mozilla.org/bonsai.html

C++ portability guide

23.
24.
25.
26.
27.
28.
29.
30.
31
32.

Don't use return statements that have an inline function in the return expression.

Be careful with the include depth of files and file size.

Use virtual declaration on all subclass virtual member functions.

Always declare a copy constructor and assignment operator.

Be careful of overloaded methods with like signatures.

Type scalar constants to avoid unexpected ambiguities.

Always use PRBool or XP Bool for boolean variablesin XP code.

Use macros for C++ style casts.

Don't use mutable.
Use nsCOMPtr in XPCOM code.

Stuff that is good to do for C or C++.

N o bk w NP

Always use the nspr types for intrinsic types.

Do not wrap include statements with an #ifdef.

#i ncl ude statements should include only simple filenames.

Macs complain about assignments in boolean expressions.

Every source file must have a unigue name.

Use#i f 0 rather than comments to temporarily Kill blocks of code.

Turn on warnings for your compiler, and then write warning free code.

Revision History.

Further Reading.

C++ portability rules.

1

Don't use C++ templates. (*)

Don't use the C++ template feature. Thisfeatureis still not implemented by all compilers, and even when itis
implemented, there is great variation. Most of the interesting things that you would want to do with templates
(type safe container classes, etc.) can be implemented with macros and casting, even though you do lose the

type safety (pity). Often times subclassing can easily achieve the same result.

(*) Thereis aan exception to this rule: nsSCOMPtr.

However, this does not mean "Open Season” for template code. The "Don't use C++ templates' rule still

applies. nsSCOMPIr is allowed because the authors spent alot of time making sure their use of templates does

not break poor compilers.

Itisvery likely that other "simple" template code will break some poor compilers which we need to support.

Don't use static constructors.

Non-portable example:

FooBar Cl ass static_object(87, 92);

voi d
bar ()
{

if (static_object.count > 15) {

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (2 of 15) [10/1/2000 7:42:12 PM]

http://www.mozilla.org/projects/xpcom/nsCOMPtr.html

C++ portability guide

}

}
Static constructors don't work reliably either. A static initialized object is an object which isinstanciated at
startup time (just before mai n() iscaled). Usually there are two components to these objects. First thereis
the data segment which is static data loaded into the global data segment of the program. The second part isa
initializer function that is called by the loader before mai n() iscalled. We've found that many compilers do
not reliably implement the initializer function. So you get the object data, but it is never initialized. One
workaround for this limitation isto write awrapper function that creates a single instance of an object, and
replace al references to the static initialized object with acal to the wrapper function:

Portable example:

static FooBarC ass* static_object;

FooBar Cl ass*
getStati cOhj ect ()

{
if (!static_object)
static_object =
new FooBar C ass(87, 92);
return static_object;
}
voi d
bar ()
if (getStaticObject()->count > 15) {
}
}

. Don't use exceptions.

Exceptions are another C++ feature which is not very widely implemented, and as such, their useis not
portable C++ code. Don't use them. Unfortunately, there is no good workaround that produces similar
functionality.

One exception to thisrule (don't say it) isthat it's probably ok, and may be necessary to use exceptionsin
some machine specific code. If you do use exceptions in machine specific code you must catch al exceptions
there because you can't throw the exception across XP (cross platform) code.

. Don't use Run-time Type Information.

Run-time type information (RTTI) isarelatively new C++ feature, and not supported in many compilers.
Don't useit.

If you need runtime typing, you can achieve asimilar result by addingacl assCOf () virtua member function
to the base class of your hierarchy and overriding that member function in each subclass. If cl assOf ()
returns a unigque value for each classin the hierarchy, you'll be able to do type comparisons at runtime.

. Don't use namespace facility.

Support of namespaces (through the nanmespace and usi ng keywords) is arelatively new C++ feature, and
not supported in many compilers. Don't use it.

. mai n() must bein a C++file.

Thefirst C++ compiler, Cfront, wasin fact a very fancy preprocessor for a C compiler. Cfront reads the C++
code, and generates C code that would do the same thing. C++ startup is slightly different to C startup (for
example static constructor functions must be called for C++), and Cfront implements this specia startup by
noticing the function called "mai n() ", converting it to something else (like"__cpp__mai n() "), adding
another mai n() that doesthe specia C++ startup things and then calls the original function. Of course for all
thisto work, Cfront needs to see the mai n() function, hence mai n() must bein a C++ file. Most compilers
lifted this restriction years ago, and deal with the C++ special initialization duties as alinker issue. But there
are afew commercia compilers shipping that are still based on Cfront: HP, and SCO, are examples.

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (3 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

10.

11.

12.

So the workaround is quite simple. Make sure that mai n() isin aC++ file. On the Unix version of Mozilla,
we did this by adding a new C++ file which has only afew lines of code, and callsthe main mai n() whichis
actualy inaCfile.

Use the common denominator between members of a C/C++ compiler family.

For many of the compiler families we use, the implementation of the C and C++ compilers are completely
different, sometimes this means that there are things you can do in the C language, that you cannot do in the
C++ language on the same machine. One example isthe 'long long' type. On some systems (IBM's compiler
used to be one, but | think it's better now), the C compiler supports long long, while the C++ compiler does
not. This can make porting a pain, as often times these types are in header files shared between C and C++
files. The only thing you can do isto go with the common denominator that both compilers support. In the
specia case of long long, we developed a set of macros for supporting 64 bit integers when the long long type
isnot available. We have to use these macrosiif either the C or the C++ compiler does not support the special
64 bit type.

Don't put C++ commentsin C code.

The quickest way to raise the blood pressure of a Netscape Unix engineer isto put C++ comments (/ /
comments) into C files. Yes, this might work on your Microsoft Visua C compiler, but it'swrong, and is not
supported by the vast majority of C compilersin the world. Just do not go there.

Many header fileswill beincluded by C files and included by C++ files. We think it's a good ideato apply this
same rule to those headers. Don't put C++ comments in header filesincluded in C files. Y ou might argue that
you could use C++ style commentsinside#i f def ___cpl uspl us blocks, but we are not convinced that is
always going to work (some compilers have weird interactions between comment stripping and
pre-processing), and it hardly seems worth the effort. Just stick to C style/ **/ comments for any header file
that is ever likely to beincluded by a Cfile.

Don't put carriagereturnsin XP code.

While thisis not specific to C++, we have seen this as more of an issue with C++ compilers, see Use the
common denominator between members of a C/C++ compiler family.

On unix systems, the standard end of line character isnew line (' \ n'). The standard on many PC editorsis
carriagereturn (" \ r '). The PC compilers seem to be happy either way, but some Unix compilers just choke
when they see a carriage return (they do not recognize the character as white space). So, we have arule that
you cannot check in carriage returns into any cross platform code. Thisrule is not enforced on the Windows
front end code, asthat code is only ever compiled on a PC. The Mac compilers seem to be happy either way,
but the same rule applies as for the PC - no carriage returnsin cross platform code.

Put a new line at end-of-file.

Not having a new-line char at end-of-file breaks some compilers (Solaris).
Don't put extra top-level semi-colonsin code.

Non-portable example:

i nt

A :foo()

{

1
Thisis another problem that seems to show up more on C++ than C code. Thisis problem really abit of a
drag. That extralittle semi-colon at the end of the function is ignored by most compilers, but it makes some
compilers very unhappy (IBM's AIX compiler doesn't like extra top-level semi-colons). Don't do it.

Portable example:
i nt
A::foo()

{
}

C++ filename extension is. cpp.

This one is another plain annoying problem. What's the name of aC++ file?fi |l e. cpp,fil e. cc,

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (4 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

13.

14.

15.

16.

17.

18.

file.Cfile.cxx,file.c++ file.C++?Most compilers could care less, but some are very
particular. We have not been able to find one file extension which we can use on all the platforms we have
ported Mozilla code to. For no great reason, we've settled onf i | e. cpp, probably because the first C++ code
in Mozilla code was checked in with that extension. Well, it's done. The extension we useis. cpp. This
extension seems to make most compilers happy, but there are some which do not like it. On those systems we
have to create awrapper for the compiler (see STRI CT_CPLUSPLUS_SUFFI Xin

ns/ confi g/ rul es. nk andns/ bui | d/ *), which actually copiesthef i | e. cpp fileto another file with
the correct extension, compiles the new file, then deletesit. If in porting to a new system, you have to do
something like this, make sure you use the #1 i ne directive so that the compiler generates debug information
relative to the original . cpp file.

Don't mix varargsand inlines.

Non-portable example:

cl ass FooBar {
void va_inline(char* p, ...) {
/1 somet hi ng
}
1
The subject saysit all, varargs and inline functions do not seem to mix very well. If you must use varargs
(which can cause portability problems on their own), then ensure that the vararg member functionisa
non-inline function.

Portable example:

/'] foobar.h
cl ass FooBar {

voi d

va_non_inline(char* p, ...);

1
/1 foobar.cpp
voi d
FooBar::va_non_inline(char* p, ...)

{
}

Don't useinitializer listswith objects.

/1 sonething

Non-portable example:

Food ass nyFoo = {10, 20};

Some compilers won't allow this syntax for objects (HP-UX won't), actually only some will alow it. So don't
doit. Again, use awrapper function, see Don't use static constructors.

Always have a default constructor.

Always have a default constructor, even if it doesn't make sense in terms of the object structure/hierarchy.
HP-UX will barf on statically initialized objects that don't have default constructors.

Don't put constructorsin header files.

The Visual C++ 1.5 compiler for windows s really flaky, and putting constructors into the headers seemsto
be one of the causes of mysterious internal compiler errors.

Be careful with inner-classes.

Some compilers (HP-UX) generally require that types (classes, enums, etc.) declared inside of another class
should be referred to with their fully scoped form (e.g., Foo: : kLi st MaxLen versuskLi st MaxLen).
Be careful of variable declarationsthat require construction or initialization.

Non-portable example:

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (5 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

voi d
A :foo(int c)
{

switch(c) {

case FOOBAR 1:
XyzC ass buf (100);
/1 stuff
br eak;

}
}
Be careful with variable placement around if blocks and switch statements. Some compilers (HP-UX) require
that any variable requiring a constructor/initializer to be run, needsto be at the start of the method -- it won't
compile code when avariable is declared inside a switch statement and needs a default constructor to run.

Portable example:

voi d
A :foo(int c)
{
Xyzd ass buf (100);

switch(c) {
case FOOBAR 1:
[l stuff
br eak;
}

}
19. Make header files compatible with C and C++.

Non-portable example:

/ *ol dCheader . h*/
i nt existingCfunction(char?*);
i nt anot her Exi sti ngCf uncti on(char*);

/* oldCfile.c */
#1 ncl ude "ol dCheader. h"

/'l new file.cpp
extern "C" {
#i ncl ude "ol dCheader. h"

b

If you make new header files with exposed C interfaces, make the header files work correctly when they are
included by both C and C++ files. If you start including an existing C header in new C++ files, fix the C
header file to support C++ (aswell asC), dontjustext ern " C" {} theold header file. Do this:

Portable example:

/ *ol dCheader . h*/

#i fdef __cpl uspl us

extern "C' {

#endi f

i nt existingCfunction(char*);

i nt anot her Exi stingCfuncti on(char*);
#i fdef __cpl uspl us

}
#endi f

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (6 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

/* oldCfile.c */
#1 ncl ude "ol dCheader. h"

/'l new file.cpp
#1 ncl ude "ol dCheader. h"

There are number of reasons for doing this, other than just good style. For one thing, you are making life
easier for everyone else, doing the work in one common place (the header file) instead of all the C++ filesthat
include it. Also, by making the C header safe for C++, you document that "hey, thisfile is now being included
in C++". That's agood thing. You aso avoid a big portability nightmare that is nasty to fix...

Some systemsinclude C++ in system header files that are designed to be included by C or C++. Not just
extern "C' {} guarding, but actual C++ code, usually in the form of inline functions that serve as
"optimizations'. While we question the wisdom of vendors doing this, there is nothing we can do about it.
Changing system header files, is not a path we wish to take. Anyway, so why is this a problem? Take for
exampl e the following code fragment:

Non-portable example:

/ *system h*/
#i fdef __cpl uspl us
[* optimzation */
inline int sqr(int x) {return(x*x);}
#endi f

/ *header . h*/
#i ncl ude <system h>
i nt existingCfunction(char*);

Il file.cpp
extern "C' {
#i ncl ude "header. h"

}

What's going to happen? When the C++ compiler findstheext ern " C' declarationinfi | e. cpp, it will
switch dialectsto C, because it's assumed all the code inside is C code, and C's type free name rules need to be
applied. But the __ cplusplus pre-processor macro is still defined (that's seen by the pre-processor, not the
compiler). In the system header file the C++ codeinsidethe #i f def __ cpl uspl us block will be seen by
the compiler (now running in C mode). Syntax Errors galore! If instead theext ern " C' wasdonein the
header file, the C functions can be correctly guarded, leaving the systems header file out of the equation. This
works:

Portable example:

[*system h*/
#i fdef __cpl usplus
[* optimzation */
inline int sqgr(int x) {return(x*x);}
#endi f

/ *header. h*/

#i ncl ude <system h>

extern "C' {

i nt existingCfunction(char*);

}

/Il file.cpp
#1 ncl ude "header. h"

One more thing before we leave theext ern " C' segment of the program. Sometimes you're going to have
toextern " C' systemfiles. Thisis because you need to include C system header files that do not have

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (7 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

20.

21.

extern " C' guarding themselves. Most vendors have updated all their headers to support C++, but there
are gtill afew out there that won't grok C++. Y ou might have to do this only for some platforms, not for others
(using #i f def SYSTEM X). The safest placeto doext ern " C' asystem header file (in fact the safest
place to include a system header file) is at the lowest place possible in the header file inclusion hierarchy. That
is, push all this stuff down to the header files closer to the system code, don't do this stuff in the mail header
files. Idedlly the best place to do thisisin the NSPR or XP header files - which sit directly on the system code.

Be careful of the scoping of variablesdeclared insidef or () statements.

Non-portable example:

voi d
A :foo()
{
for (int i =0; i < 10; i++) {
/1 do sonething
}

/1 i mght get referenced
/1l after the | oop.

}

Thisisactually an issue that comes about because the C++ standard has changed over time. The original C++
specification would scope thei as part of the outer block (in this case function A: : f 0o()). The standard
changed so that now thei inis scoped withinthef or () {} block. Most compilers use the new standard.
Some compilers (for example, HP-UX) still use the old standard. Some other compilers (for example, gcc) use
the new rules, but will tolerate the old. If i wasreferenced later inthef or () {} block, gcc will allow the
construct, but give awarning about use of an "obsolete binding". So, while the code aboveisvalid, it would
become ambiguousiif i was used later in the function. It's probably better to be on the safe side and declare the
iterator variable outside of thef or () loop. Then you'll know what you are getting on al platforms:

Portable example:

voi d
A:: foo()
L
Int I;
for (i =0; i < 10; i++) {
/1 do sonet hing

}
/1 i mght get referenced
{1 after the | oop.

}

Declarelocal initialized aggr egates as static.

Non-portable example:

voi d
A:: func_foo()

{
char* foo_int[] = {"1", "2", "C'};

}

This seemingly innocent piece of code will generate a"loader error” using the HP-UX compiler/linker. If you
really meant for the array to be static data, say so:

Portable example:
voi d

A.: func_foo()
{

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (8 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide
static char *foo_int[] = {"1", "2", "C'};

}

Otherwise you can keep the array as an automatic, and initialize by hand:

Portable example:

voi d
A:: func_foo()

{

char *foo_int[3];

foo_int[0] = XP_STRDUP("1");
foo_int[1] = XP_STRDUP("2");
foo_int[2] = XP_STRDUP("C');

/1 or sonething equally Byzantine...

}

22. Expect complex inlinesto be non-portable.

Non-portable example:

cl ass Food ass {

|nt f ooMet hod(char* p) {
if (p[0] =="'\0")
return -1;

doSorret hi ng() ;
return O;

}
-

It's surprising, but many C++ compilers do avery bad job of handling inline member functions. Cfront based
compilers (like those on SCO and HP-UX) are prone to give up on all but the most simple inline functions,
with the error message "sorry, unimplemented"”. Often times the source of this problem is an inline with
multiple return statements. The fix for thisisto resolve the returnsinto a single point at the end of the
function. But there are other constructs which will result in "not implemented". For this reason, you'll see that
most of the C++ code in Mozilla does not use inline functions. We don't want to legislate inline functions
away, but you should be aware that there is some danger in using them, so do so only when there is some
measurable gain (not just a random hope of performance win). Maybe you should just not go there.

Portable example:
cl ass Food ass {

int fooMethod(char* p) {
int return_val ue;

if (p[0] =="10") {
return_value = -1,

} else {
doSonet hi ng() ;
return_val ue = 0;

}

return return_val ue;

}
1
Or

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (9 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

23.

24.

25.

26.

Portable example:

cl ass Food ass {

int fooMet hod(char* p):

3
i nt Food ass::fooMethod(char* p)
if (p[0] =="\0")
return -1;

doSonet hi ng() ;
return O;

}

Don't usereturn statementsthat have an inline function in the return expression.

For the same reason as the previous tip, don't use return statements that have an inline function in the return
expression. You'll get that same "sorry, unimplemented" error. Store the return value in atemporary, then pass
that back.

Be careful with theinclude depth of filesand file size.

Be careful with the include depth of files and file size. The Microsoft Visual C++1.5 compiler will generate
internal compiler errorsif you have alarge include depth or large file size. Be careful to limit the include
depth of your header files aswell as your file size.

Usevirtual declaration on all subclassvirtual member functions.

Non-portable example:

class A {
virtual void foobar(char*);

i

class B : public A {

voi d foobar(char*);
b
Another drag. In the class declarations above, A: : f oobar () isdeclared asvirtual. C++ saysthat all
implementations of void f oobar (char *) in subclasseswill aso be virtual (once virtual, always virtual).
This codeisredly fine, but some compilers want the virtual declaration also used on overloaded functions of
the virtual in subclasses. If you don't do it, you get warnings. While thisis not a hard error, because this stuff
tends to be in headersfiles, you'll get so many warnings that's you'll go nuts. Better to silence the compiler
warnings, by including the virtual declaration in the subclasses. It's also better documentation:

Portable example:

class A {
virtual void foobar(char*);

H

class B: public A{
virtual void foobar(char*);
1

Always declare a copy constructor and assignment oper ator .

One feature of C++ that can be problematic is the use of copy constructors. Because a class's copy constructor
defines what it means to pass and return objects by value (or if you prefer, pass by value means call the copy
constructor), it'simportant to get this right. There are times when the compiler will silently generate acall to a
copy constructor, that maybe you do not want. For example, when ayou pass an object by value as afunction
parameter, atemporary copy is made, which gets passed, then destroyed on return from the function. Maybe

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (10 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

27.

28.

you don't want this to happen, maybe you'd adways like instances of your class to be passed by reference. If
you do not define a copy constructor the C++ compiler will generate one for you (the default copy
constructor), and this automatically generated copy constructor might, well, suck. So you have a situation
where the compiler is going to silently generate calls to a piece of code that might not be the greatest code for
the job (it may be wrong).

Ok, you say, "no problem, | know when I'm calling the copy constructor, and | know I'm not doing it". But
what about other people using your class? The safe bet isto do one of two things: if you want your classto
support pass by value, then write a good copy constructor for your class. If you see no reason to support pass
by value on your class, then you should explicitly prohibit this, don't let the compiler's default copy
constructor do it for you. The way to enforce your policy isto declare the copy constructor as private, and not
supply a definition. While your at it, do the same for the assignment operator used for assignment of objects of
the same class. Example:

class foo {

private:

/1l These are not supported

/1 and are not inplenented!

foo(const foo& x);

f o0& operat or=(const foo& Xx);

}

When you do this, you ensure that code that implicitly calls the copy constructor will not compile and link.
That way nothing happens in the dark. When a user's code won't compile, they'll see that they were passing by
value, when they meant to pass by reference (oops).

Be car eful of overloaded methodswith like signatures.

It's best to avoid overloading methods when the type signature of the methods differs only by 1 "abstract" type
(e.g. PR_I nt 32 ori nt 32). What you will find as you move that code to different platforms, is suddenly on
the Foo2000 compiler your overloaded methods will have the same type-signature.

Type scalar constantsto avoid unexpected ambiguities.

Non-portable code:

cl ass Food ass {
/1 having such simlar signatures
I/l is a bad idea in the first place.
void doit(long);
voi d doit(short);

1
voi d
B: : f oo(Food ass* xyz)
{
Xxyz->doi t (45);
}

Be sure to type your scalar constants, e.g., PR_INT32(10) or 10L. Otherwise, you can produce ambiguous
function calls which potentially could resolve to multiple methods, particularly if you haven't followed (2)
above. Not al of the compilerswill flag ambiguous method calls.

Portable code:

cl ass Food ass {
/1 having such simlar signatures
/1l is a bad idea in the first place.
void doit(long);
voi d doit(short);

1

voi d

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (11 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

29.

30.

31.

32.

B: : foo(Food ass* xyz)

{
}

Type scalar constantsto avoid unexpected ambiguities.

xyz->doi t (45L);

Some platforms (e.g. Linux) have native definitions of types like Bool which sometimes conflict with
definitionsin XP code. Always use PRBool (PR_TRUE, PR_FALSE) or XP_Bool (TRUE, FALSE).

Use macrosfor C++ style casts.

Not al C++ compilers support C++ style casts:
static_cast <type>(expressi on) (C++ style)
(type) expression (Cstyle)

The header nscore.h defines portable cast macros that use C++ style casts on compilers that support them, and
regualar casts otherwise.

These macros are defined as follows:

#defi ne NS_STATI C CAST(__type, _ ptr) static_cast<__type>(__ptr)
#defi ne NS_CONST_CAST(__type, __ptr) const _cast<__type>(__ptr)

#defi ne NS_REI NTERPRET_CAST(__type, _ ptr) reinterpret_cast<__type>(__ptr)
Note that the semantics of dynami ¢_cast cannot be duplicated, so we dont use it. See Chris Waterson's
detailed explanation on why thisis so.

Example:
Instead of:

foo t * x = static_cast<foo_t *>(client_data);
bar _t * nonConst X = const_cast<bar_t *>(this);
Y ou should use:

foo_t * x = NS_STATIC CAST(foo_t *,client_data);
bar _t * nonConst X = NS _CONST_CAST(bar_t *,this);
Don't use mutable.

Not al C++ compilers support the nut abl e keyword:

You'll haveto use the "fake this' approach to cast away the constness of a data member:

void Myd ass: : MyConst Met hod() const

{
MyCd ass * fakeThis = NS_CONST_CAST(Myd ass *,this);

/] Treat nFoo as nutabl e
f akeThi s- >nfFoo = 99;

}

Use nsCOMPtr in XPCOM code.

Mozilla has recently adopted the use of nsSCOMPtr in XPCOM code.

See the nsSCOMPtr User Manual for usage details.

Stuff that is good to do for C or C++.

1

Always usethe nspr typesfor intrinsic types.

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (12 of 15) [10/1/2000 7:42:12 PM]

http://lxr.mozilla.org/mozilla/source/base/src/nscore.h
mailto:waterson@netscape.com
news://news.mozilla.org/36718FB3.87154911%40netscape.com
http://www.mozilla.org/projects/xpcom/nsCOMPtr.html
http://www.mozilla.org/projects/xpcom/
http://www.mozilla.org/projects/xpcom/nsCOMPtr.html

C++ portability guide

Always use the nspr types for intrinsic integer types. The only exception to this rule is when writing machine
dependent code that is called from xp code. In this case you will probably need to bridge the type systems and
cast from an nspr type to a native type.

. Do not wrap include statementswith an #i f def .

Do not wrap include statements with an #i f def . The reason is that when the symbol is not defined, other
compiler symbolswill not be defined and it will be hard to test the code on al platforms. An example of what
not to do:

Bad code example:

/[l don't do this
#i fdef X

#i ncl ude "foo. h"
#endi f

The exception to this rule iswhen you are including different system files for different machines. In that case,
you may need to have a#i f def SYSTEM Xinclude.

. #i ncl ude statements should include only simple filenames.

Non-portable example:

#i ncl ude "directory/fil ename. h"

Mac compilers handle#i ncl ude path namesin adifferent manner to other systems. Consequently

#i ncl ude statements should contain just simple file names. Change the directories that the compiler
searches to get the result you need, but if you follow the Mozilla module and directory scheme, this should not
be required.

Portable example:

#i ncl ude "fil enanme. h"

. Macs complain about assignmentsin boolean expressions.

Another example of code that will generate warnings on a Mac:
Generates warnings code:
if ((a=Db) ==2¢)
Macs don't like assignmentsin if statements, even if you properly wrap them in parentheses.
More portable example;

a=b;
if (a == c¢)

. Every sourcefile must have a unique name.

Non-portablefile tree:

feature_x
private.h
X. cpp
feature_y
private.h
y.cpp
For Mac compilers, every has to have a unigue name. Don't assume that just because your fileis only used
locally that it's OK to use the same name as a header file elsawhere. It's not ok. Every filename must be
different.

Portablefile tree:

feature_x

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (13 of 15) [10/1/2000 7:42:12 PM]

C++ portability guide

Xxprivate. h

X. Ccpp
feature_y

yprivate. h
y.cpp
6. Use#i f O rather than commentsto temporarily Kill blocks of code.

Non-portable example:

i nt
foo()
{
a=b+c
/*
* Not doing this right now
a += 87,
if (a>Db) (* have to check for the
candy factor *)
C++;
*/
}

Thisisabad idea, because you always end up wanting to kill code blocks that include comments already. No,
you can't rely on comments nesting properly. That's far from portable. Y ou have to do something crazy like
changing/ **/ pairsto (**) pairs. You'll forget. And don't try using #i f def NOTUSED, the day you do
that, the next day someone will quietly start defining NOTUSED somewhere. It's much better to block the code
out witha#i f 0, #endi f pair, and agood comment at the top. Of course, thiskind of thing should aways
be atemporary thing, unless the blocked out code fulfills some amazing documentation purpose.

Portable example:

i nt
foo()
{

b + c;

ol -

a
#if

/* Not doing this right now */

a += 87,

if (a>Db) /* have to check for the

candy factor */
C++;
#endi f

}
7. Turn on warningsfor your compiler, and then write war ning free code.

This might be the most important tip. Beware lenient compilers! What generates a warning on one platform
will generate errors on another. Turn warnings on. Write warning free code. It's good for you.

Revision History.

« 0.5Initial Revision. 3-27-1998 David Williams
o 0.6 Added "C++ Style casts" and "mutable” entries. 12-24-1998 Ramiro Estrugo
« 0.7 Added "nsCOMPtr" entry and mozillaZine resource link. 12-02-1999 Ramiro Estrugo

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (14 of 15) [10/1/2000 7:42:12 PM]

mailto:djw@djw.org
mailto:ramiro@netscape.com
mailto:ramiro@netscape.com

C++ portability guide

Further reading:

Here are some books and pages which provide further good advice on how to write portable C++ code.
o Scott Meyers, Effective C++ : 50 Specific Ways to Improve Y our Programs and Designs
o Robert B. Murray, C++ Strategies and Tactics
o mozillaZine has alist of books on C++, Anti-C++, OOP (and other buzzwords). Thislist was compiled
from the suggestions of Mozilla devel opers.
o others?

Copyright © 1998 Netscape Communications Corporation

Copyright © 1998-2000 The Mozilla Organization.
L ast modified July 5, 2000.

http://www.cs.umd.edu/users/cml/cstyle/mozilla-portable-cpp.html (15 of 15) [10/1/2000 7:42:12 PM]

http://www.amazon.com/exec/obidos/ISBN=0201924889
http://www.amazon.com/exec/obidos/ISBN=0201563827
http://www.mozillazine.org/resources/recommendations1.html
http://home.netscape.com/misc/contact_info.html
http://www.mozilla.org/webtools/bonsai/cvslog.cgi?file=mozilla-org/html/hacking/portable-cpp.html&rev=&root=/cvsroot/

	umd.edu
	C++ portability guide

