OBJECT-ORIENTED DOCUMENTATION

Johannes Sametinger

C. Doppler Laboratory for Software Engineering
Johannes Kepler University of Linz
A-4040 Linz, Austria

Abstract

Object-oriented programming improves the reusability of software components. Extensive
reuse of existing software enhances the importance of documentation. In order to increase
the productivity in documenting and to make the structure of documentation better suitable
for object-oriented software systems, we suggest to apply object-oriented technology to the
documentation, too. This makesit possible to reuse documentation by extending and modi-
fying it without making copies and without making any changes to the original documenta-
tion. Additionally, interests of various groups of readers (e.g., reusers, maintenance staff)
can be taken into account, and easy access to relevant information can be given.

In this paper we briefly describe a documentation scheme for object-oriented software sys-
tems. This scheme distinguishes among overview, external view and internal view of both
datic and dynamic aspects of software components. Then we apply inheritance by simply
reusing and extending existing documentation where appropriate, and enforce information
hiding by providing an access control mechanism. This improves the reusability and acces-
sibility of documentation. Additionally, we present an exemplary tool and relate our experi-
ence with object-oriented documentation.

Introduction

The object-oriented programming paradigm achievesjar improvementn the reusability
of existing software components. However, increasing reuse intensifisgdtior precise
documentation to exprefise capabilitiesof reusablecomponent@and encourageshe reuse
of variouscomponent®f existingdocumentationtoo. Softwaredocumentationis usually

divided into user documentationsystemdocumentationand project documentation(see
[ANS83, Pom86]). In this paper we concentrate on systecamentationywhich describes
interfacesand implementation aspectsto facilitate reuse and to enable maintenance.
Documentation schemes for conventional software systems @daldasshe specialneeds
of softwarereusersthat arise with the widespreaduse of object-orientedprogramming.
Reusingexisting softwarewill becomea very importanttechniquethat will significantly

Object-Oriented Documentation Johannes Sametinger

improve the productivity of programmers as well as the ovquallity of softwaresystems.
To achieve this goal, we have to succeed in providingigi portion of information about
which components come into question for reuse and how to reuse these components.

For those readers unfamiliaith the object-orientecparadigm,we introducethe termsthat
are usedthroughoutthis paperin the next section.This sectioncanbe skippedby readers
that are used to object-oriented terminology.

Object-Oriented Programming Terminology

Objects: A running object-orientedsoftware systemconsistsof objects.Eachobject has
structureand behavior.For example,a rectangleobject's structuremight consistof an
origin andan extent (calledinstancevariables)andits behaviormight include Draw and
Rotate (called methods).Objectsbecomeactive by executingone of their methods,in
which they can changetheir stateand sendmessageso other objects,which in turn
invokes the execution of the corresponding methods of those objects.

Classes, methods: The sourcecode of an object-orientedsoftware systemconsistsof
classes containing theriables(structure)and the methods(behavior).Objectswith the
samestructureand behaviorare describedin one class.So far, from a documentor’s
point of view, classesand methodsseemto be equivalentto modulesand procedures
used in conventional programming.

Inheritance: Oneof the main differencesbetweenmodulesand classess the inheritance
relationshipbetweenclassesA classmay inherit the structureand behaviorof another
classand additionally extendand modify it. For example,classesRectangle and Circle
inherit from a classhape, which defines the structure atite behaviorthatis applicable
to (all) graphical objectsectangle and Circle are called subclassegor derivedclasses),
whereasShape is calledthe superclasgor baseclass). The sourcecode of the classes
Rectangle and Circle containsonly the modificationsand extensionsto the superclass
Shape (see Fig. 1).

methods of class Rectangle

classes: ‘ 4 ¢ ‘
Rectangle
Shape

Draw Outline Move Rotate

Fig. 1: Methods of classé&hape andCircle

Object-Oriented Documentation Johannes Sametinger

The gray boxesin Fig. 1 indicatethe existenceof sourcecodefor a method.Rectangle
objects can be drawn, outlined, moved, and rotdkenlighthe classRectangle doesnot
implement the method3utline and Move; they areinheritedfrom the superclasshape.
The method®raw andRotate are overridden; i.e., rectangle objects have thwem draw
and rotate methods, they do not use the (hidden) methodsShkteeclass.

Extension, modification, reuse: Supportedby the inheritancemechanismgextension
and modification of existing classes is achieved by adding variables, analdolirigand
overriding methods.Usually object-orientedorogrammersdo not write programsfrom
scratch because it is oft@wossibleto reuseexisting classedy extendingand modifying
them.In contrastto conventionalprogrammingthis canbe done without changingthe
existing source code.

Class libraries, application frameworks: Thereuseof classesbecomesan inherent
part of the object-orientedsoftwaredevelopmenprocess.This resultsin collectionsof
highly reusableclassescalled classlibraries. Classlibraries that define an application
skeleton are called applicatibrameworks.The skeletonconsistsof classeghat haveto
be reusedin orderto easilyimplementan applicationwith a moderngraphic userinter-
face.

Clients, heirs, friends: Classes, like modules, support information hiding. Variabhes
methodscan be private (not accessiblefrom outside), protected (accessibleto sub-
classes)andpublic (accessibldo the clientsof a class)(seeFig. 2). This follows the
C++ programmindanguagegsee[Str91]). Classedike Rectangle and Circle that inherit
from classShape are called its heirs; they have access ttligic and protectedpartsof
Shape. Classeghatuse Shape, e.g., by sendingmessages$o shapeobjects,are called
clientsandonly haveaccessights for the public part of Shape. Obviously objects of
classShape have access to the private part also. This acoegs be madeavailableto a
specific client classalso, which we thencall a friend of Shape. A friend relationshipis

public
heirs -— clients

— = | protected private

T T T

friends

Fig. 2: Access rights of clients, heirs and friends

Object-Oriented Documentation Johannes Sametinger

useful when classes are strongly coupled.

Reuser: Both programmerglevelopingclient classesand heir classes(subclassespf a
class are reusers of this claBsr example,classShape hasbeenreusedfor developing
classRectangle, and class Rectangle could be reusedto implementa graphicseditor.
Reusersare not interestedin the implementationof the reusedclass and thus have
differentinformation and documentatiordemandshan programmersvho maintainthe
class or write friend classes.

Additionally, polymorphism anddynamic binding are terms thgplay a major role in object-
orientedprogramming.However, they are of minor relevancefor the documentatiornwe
describe irthis paper.Therefore we refrain from describingthemhere.For more detailed
and more extensive descriptions of the concepts and terms described in this secggar, we
the reader to [Mey87] and [Str91].

Class libraries and application frameworks must provide extensive documentation in order to
facilitate reuse and achievadespreadacceptanceThis documentatiorhasto be integrated

and reused in an application's documentation, just gar#fi@bricatedsoftwarecomponents
areintegratednto an application'ssourcecode. In the next sectionwe briefly describea
scheme for system documentation of object-oriented software systems. (By seftstane

we mean a class library, e.g., an applicaframework,or an applicationprogram.)Based

on this scheme, we subsequently demonstrate hawpimve the structure the reusability,

and the accessibility of various parts by applying object-oriented techniques.

Documentation Scheme for Object-Oriented Software

Typically, object-orientedsoftwaresystemsare extensionso classlibraries or application
frameworks. This characterizatiorshould becometrue for the documentationas well.
Hence, such documentatiordoesnot describethe entire systemfrom scratch;instead, it
contains a description of all extensions and modificatadrtbe reusedcomponentand de-
scribes all system-specific parts as well. It is assutimaiseparatdibrary documentations
available which—similar to the code—provides the base for the entire documentation.

Different documentation is needed by people who maintain software compandipisople
who reuse them. Hence, wléstinguishbetweernreuserinformation (heededor reuse)and
implementation descriptions (needed faaintenance)The dynamicbehaviorof object-ori-
entedsoftwaresystemss usually more complexthan that of conventionallyimplemented
systems. Thuswe alsodifferentiatestaticaspectof a system(its architectureandits dy-

Object-Oriented Documentation

Johannes Sametinger

overview external view internal view
) . class class
static static . .)
view overview interface implementation
description description
dynamic dvnamic task task
. ynar interface implementation
view overview .. .
description description

Fig. 3: Documentation scheme for object-oriented software system:

namic behavior (e.ggontrol flow). Finally, an overviewof a systemis neededo makea
decisionon whetherto reuseexisting softwarecomponentand to easethe familiarization
procesdor programmergreusersand maintainers).Thesedifferent information needsof
various groups of readers resultsix differentdocumentatiorparts(seeFig. 3), of which
the two internal view parts are intendedprimarily to supportsoftware maintenanceThe
other four parts are also necessary for the maintenance personnel, but their primary goal is to
facilitate the reuse of the software described.

Subsequentlywe briefly outline the six documentationparts. (For more details see

[Sam93].)

Static Overview

The static overview contains the description of the overall implementation (e.g., supported
platforms, hardwarerequirements,the programminglanguage),the structure of the
softwaresystem(e.g., component®f the systemcomprisingbasic classes application
classes, container classes), the organization of the classeslésshjerarchy,client re-
lations), and brief descriptions of all classes.
Figure4 showsthe classhierarchyof the classesObject, Shape, Rectangle, and Circle
used throughout this paper.

MTFTRectanrnrngle

—oem T

Dynamic Overview

Shap s

Obhje ct

Fig. 4: Class hierarchy

Circle

The dynamic overview describes the various concepts that are necessatgrsiandhe
dynamic behavior of the softwasystemunderconsiderationTypical examplesof these

Object-Oriented Documentation Johannes Sametinger

concepts in an application framework fpaphicaluserinterfacesare eventhandlingand
generalcontrol flow, but also processand interapplicationcommunicationmodels, the
handling of undoable commands, change propagationyarttbw and/orview updating
policy.

A description of how rectangle and circle objectsiafermed aboutevents(mouseclick,
key input) would be part of the dynamic overview of our example classes.

Class Interface Description

Classinterfacedescriptionsdepict all classesrom a static and externalpoint of view.
They shouldhelp to answerquestionsconcerningthe capabilitiesof classesand about
how to usethe variousoperationsof a particularclass.Thesedescriptionsare important
references for programmers who either reuse or maintain a software system.

A short example description of claRectangle could take the following form:

class Rectangle:

short description: The class Rectangle represents visual rectangle objects that are drawn on the
screen. ...
superclass: Shape
methods:
Draw (...): The rectangle object is drawn on the screen.

Outline (...): The outline of the rectangle object is drawn on the screen.
Move (...): The coordinates of the rectangle object are changed according to the parameters.

Rotate (...): The rectangle object is rotated according to the parameters specified.

Task Interface Description

Classlibraries and applicationframeworksusually consistof hundredsof classesand
thousandof methods.lt is extremelydifficult for programmergo use existing classes
when only their interfacedescriptionsare available. To facilitate reuse of complex li-
braries,programmersaveto be providedwith detailedinformation on what hasto be
doneto fulfill a certaintask, e.g.: Which classeshaveto be used?Canthey be useddi-
rectly, or is it necessaryto derive subclasses¥hich methodshaveto be overridden?
Which messages have to be sent (and in which order)?

An example task interface description would be the description of howShigsesand its
subclasses can be used with other classes to implement a simple graphics editor.

Class Implementation Description

The classimplementationdescriptioncharacterizesll classesfrom a static and internal
point of view. It should clarify the concept and the internal structure of a class so that even

Object-Oriented Documentation Johannes Sametinger

softwareengineersiot involved in the class’sdevelopmentanunderstandand maintain

it. Classimplementationdescriptionsare intendedto be read by the maintenancgand
development)personnelonly, not by reusers.Important componentsof the classim-
plementation description are the description of the internal structure of the class,dhe use
other classes (components), and the name, purpose and type of all raetheaisables.
Furthermore methodsthat implementnon-trivial algorithmsshould be describedhere.

The class implementation description can be sese&m extensionto the interfacedescrip-

tion. Hence, things described in the interface description do not have to repeated here.
A short example description of claSsape could look like this:

class Shape:
variables:
origin: The variableorigin identifies the left top point of the graphical object.
extent: The variableaxtent specifies the right bottom point relative to the origin.
methods:

Outline (...): The rectangle object is rotated according to the parameters specified.
Whether the variablezigin andextent are described in the interface or the implementation
description depends on whether they are accessible by clients or not.

Task Implementation Description

The taskimplementatiordescriptioncharacterizeghe implementationof importanttasks
from a dynamic and internal point of view clbntainsdescriptionsabouthow the system
(not an individual class thereof) fulfills a certain task, aMghich classes/methodsrein-
volved in a task’Answersto thesequestionsareimportantfor anyonetrying to compre-
hendthe functioning of a softwaresystem.Consequentlytask implementationdescrip-
tions—Ilike class implementationdescriptions—aregorimarily dedicatedto maintenance
programmers.

An examplewould be the descriptionof how a simple graphicseditor would determine
which of the shape objects (existing at run-time) a user clicked at with the mouse.

Any documentatiorthat can be directly relatedto a specificcomponenbf the sourcecode,
I.e., both the interfaceand the implementatiordescriptionsof classesarevery well suited
for reuse. Thus, in the following we will concentrate on documentatictas$esand apply
object-orientedechniquedo both their interfaceand their implementationdescriptionsand
thus improve reusability and extensibility of documentation as with the source code.

Object-Oriented Documentation Johannes Sametinger

Reusing Documentation

The reuseof softwarecomponentss facilitated by the inheritancemechanismlinheritance
can be viewed asoth extensionand specializationsee[Mey87]). ClassRectangle inherits
from superclasseShape and Object. The featuresof the superclasseare a subsetof the
features of clasRectangle; i.e., Rectangle inherits whateverShape and Object provide and
includes its own extensions. On the other hand, inheritance is used to realizeelatisra
For exampleRectangle is a special visual objecBfape) with thefeaturesof a visual object
but specialized behavior (specialization).

methods of class Rectangle

classes: ¢ ‘ 4 ¢ ¢ ‘
Rectangle
Shape
Object
Compare PrintOn Draw Outline Move Rotate

Fig. 5: Inherited and overridden methods of cRegangle

Figure 5 graphically represents the inheritance mechanism. In this exaags@bject pro-

videstwo methods,Compare and PrintOn. Class Shape (a subclassof Object) overrides
PrintOn and adds the methoBsaw, Outline, Move, and Rotate. ClassRectangle is a sub-
classof Shape and overridesthe methodsPrintOn, Draw, and Rotate. Again, the shaded
boxesin Fig. 5 indicatethe existenceof methods.Class Rectangle providesthe methods
PrintOn, Draw, and Rotate of its own. The methodsOutline and Move are inherited form

Shape, Compare is inherited fromObyject.

Overriding a method meanseither replacingthe overriddenmethodor extendingit, i.e.,
invoking the overriddenmethodin the overridingone. However, from the viewpoint of a
class' reuser there is no difference between an overriding and an extending method.

As with the sourcecode, a class should inherit the documentationof its superclasses.
However, the benefitsf inheritancewould not be worth the effort when appliedonly to a
class'sdocumentatioras a whole. Therefore,we suggestdividing it into (arbitrary) sec-
tions. A section is portion of documentatiortext with a title. The sectionscanbe defined

by the programmer and used for inheritance in the same wagtheds.Similarly to meth-

ods, sectionsare either left unchangedremoved,replaced,or extendedin subclasses.
Examplesof suchsectionsare: shortdescription,conditionsfor use,documentatiorof in-
stancevariables,and descriptionof instancemethods We further suggestdefining a basic

set ofsectionsthat hasto be providedfor eachclass(e.g., thoselisted above).Depending

on the class, other sections have to be added, e.g., event handling, change propagation.

Object-Oriented Documentation Johannes Sametinger

documentation of class Rectangle

class: ¢ ¢ ‘ ¢

Rectangle \
Shape
Object I

Short Conditions Storing Graphical
Description for Use on Files Objects

Fig. 6: Inherited and overridden documentation sections of Reztangle

Figure 6 containsthe structureof the documentationof the classesObject, Shape, and
Rectangle. The documentatiorof classObject consistsof 3 sections;classesShape and
Rectangle have four documentation sections. ClBegtangle inheritsthe sectionStoring on
Files from the clas®©bject and the section€onditions for Use and Graphical Objects from
classShape; it hasan own Short Description. Pleasenote that the documentatiorof class
Rectangle consists of four parts, though only a short description has been written for it.

The documentation of methods is organizedstimeway asthat of classegseeFig. 7). It
is worth mentioningthat there might be classeshat do not implementa certain method.
Naturally, they do not contain any documentationfor this method. However, both the
method and its documentation are available in these classes through inheritance.

documentation of method Compare in class Recta

method Compare: J ‘ J

not in class Rectangle

not in class Shape

in class Object |
Short How to

Parameters

Description use it

Fig. 7: Inherited and overridden documentation of a method

In Fig. 7 the original documentation of methoampare in classObject consistsof the sec-
tions Short Description, Parameters, andHow to useit. Classeshape andRectangle do not
overridethe methodCompare (seeFig. 5) andthusinherit both the methodand its corre-
sponding documentation from claShbject.

The object-orientednessf documentatiorpresentedso far is useful for both interfacede-
scriptions (neededfor reuse)and for implementationdescriptions(primarily neededfor
maintenance), but no explicit distinction is made between them.

Object-Oriented Documentation Johannes Sametinger

Control of Access to Documentation

Information hiding plays a majaole in dealingwith very large softwaresystems Besides
hiding implementationdetails of classes,this meanscontrolling accessto variablesand
methods of classes. #seful control mechanisnis the distinctionamongprivate, protected
and public variables amntiethods asis donein the programminganguageC++. This dis-
tinction determines access rights for clients, heirs and friends of classes.

This simple, yet usefuhechanisntanalsobe usedfor documentatiorsectionsin orderto

meet different documentation needs of various readers. Public sections can be read by every-
one and are devotedto describinghow to use a class. Protectedsectionscontain more
detailedinformationthatis (additionally) neededto build subclassesFinally, private sec-

tions contain additional implementation details thatex@usivelyintendedfor development

and maintenance personnel (see Fig. 8).

documentation of class Rectangle for ...

friends
heirs \
clients | l J
class: v v ' v
Rectangle \
Shape
Short Conditions Storing Graphical How to Store Maintenance
Description for Use on Files Objects on Files Information

Fig. 8: Documentation sections for clients, heirs, and friends

The whole documentation of a clgss a method)is visible only for friends. Reuseravho
build subclasses (heirs) see only a sub§é¢tis documentationthey do not haveaccesdo
private sections, which typically describe implementation detagds{enance information in

Fig. 8). Clients' accessis further restrictedto public sections,which contain general
interfacedescriptiongShort Description, Conditions for Use, Storing on Files, Graphical

Objectsin Fig. 8). Please note that, similarly to the source code, pseateonsof the doc-
umentation are nahherited;i.e., private documentatiorof the classeObject and Shape is

not part of the documentation of cldstangle. In Fig. 8 this is indicated by thick hori-

zontal lines. The implementdor friends) of classRectangle cannotreadthe privateimple-
mentationdetailsof Rectangle's superclassesnlessthe latter are declaredas readableby
heirs, i.e., unless they are described in protected sections.

-10-

Object-Oriented Documentation Johannes Sametinger

Tool Support

The mechanism®f inheritanceandinformation hiding are rather useless,unlessthey are
supported by tools to give fast access to relevant parts of the documentation. A passible
to achieve this goal i® print the documentatiorsectionsfor all classesand methods.This
can be done in various ways:

* Only thosedocumentatiorsectionsare printed that are specifically written for a certain
classor method.This has the disadvantagehat the documentatiorof all superclasses
also has to be inspected in order to find out the whole story about a class.

* The inherited sections are also printed for each eladsnethod.This easegeadingthe
documentatiorconsiderablybut requiresmultiple printing of sections.The sectionsei-
ther canbe divided into groupsfor clients, heirsandfriends, or the documentatiorcan
be separatelyprintedfor eachof theseusergroups, which requiresadditional multiple
printing of sections.

A bettersolutionis to provideatool that manageshe sectionsof a software systemand
providessuitabledocumentatiorof the classesand methodsfor either clients, heirs, or
friends. DOgMA (see[Sam92Db))is atool that supportsbrowsing mechanismgor classes
and methods; i.e., it displays the methods of a class for clleitsandfriends. The same
mechanism is provided for documentate@attions(seeFig. 9). The userinterfaceconsists
of a menubar, an informationbox (containinginformationlike the currently displayedtext
or the inheritance), a text edit@mnd selectionlists for classesmethodsand documentation
sections. The selection lists of DOgMA can be used to disglagusaspectof a software
system. For example, it is possible to display a class's methods for cliehtsiy$@nd for
friends. Accordingly, the documentation sections relevant for clients, hdnsruts canbe
displayed in the lower right list.

In Fig. 9 the documentatiorsectionWindows and Icon of the classDProjectis displayed,;
actually this section is inherited from teaperclasocument.Wheneverthe userselectsa
class or method in the two selection lists at the upght corner,the lower list displaysall
documentation sections that belong to this class or mefamthsectiontitle is precededyy
the name of the class in whitle sectionis defined.In Fig. 9 we canseethat the various
sections are inherited from the superclasses Document, EvtHandler, and Object.

-11 -

Object-Oriented Documentation Johannes Sametinger

O :D0gMA3: O

File Edit Project

Displayed Text: class DProject write protected [| Editable Classes (58) |Methods for clients (131)
Comment: The sbstract class Document manages the data of an spplication, Domuments Changed11Cnd ahstractdethod
File: Jhomelocal JET++ fman Test /Domument, short.d
Inheritance DFroject HyperProject Docwment EviHandler Object Root ChapterItem

: CommentItem
Uwindows and Icon CommentHark

Each document has a main window. The main window must he CommentN?deItem
Commentyiew

created by the method DoMakeWindows and is added to the
docunent’s 1ist of windows in the dnstvar windows. The]
layout of the main window usually contains a view to present j|CanInporthocument
the document’s data to the user. For example, a text editor DoculdenthefMark fIcanLoadbocument
would have a TextV¥iew installed in the main window. Other DoculdentMark nLoadFile

DOgHA

windows which logically helong to the document can he added DocuReplaceMark hanged

to the Tist with the method Addwindow, e.g. the DocuText 1c1asshane

"Find/Change" dialog. . - .

& document can be dconified and deiconified by the method DocuTitletark {} Clear¥isited

Toggle. This method closes all the windows contained in the Documentation for Clients (19)

Tist and opens an icon window instead. The dcon window s Document: Mame {}
created by the method DoMakeIcon. Document: Description

Commands and Change Management Document: Loading and Storing

Document: Document Type

The method PerformCommand executes commands. The Tast n
Document: Windows and Icon

executed command is saved in the instvar lastCmd so that it
can he undone or redone later by the method Undo. Whenever a

Document: Instance Method List

command is performed or undone the document updates the Document: Known Froblems

instvar changeCount. The change count dindicates whether a EvtHandler: Event Handler Chain

document is modified and therefore has unsaved changes. For EvtHandler: Controlling

example, if a document has been modified and is to he EvtHandler: Commands

closed, then an alert is popped up which allows the user to EvtHandler: Menus

uecide what to do with the changes. Object: Class Descriptors and Dynamic Type-Checks {}
[y]

Fig. 9: User Interface of DOgMA

Experience

In our researchprojectswe use the public domain application framework ET++ (see
[Wei89]), for which detaileddocumentatiorfor the mostimportantclassesand methodsis
available.Unfortunately,it is rathercumbersomeo get relevantinformation about certain
classesand methodsbecausehe datais usually spreadover the descriptionsof several
classeg(superclasses)herefore,we divided the documentatiorinto sections(e.g., de-
scription, instance variables, methods, example) to be used with our tool DOgMA.

Although the documentation of ET++ had not beeitten with inheritanceandinformation
hiding in mind, the benefitsf applyingthesemechanismsvere enormous DOgMA previ-
ously already provided comfortablebrowsing mechanismghat were highly esteemedoy
programmergespeciallybeginnersjusingthe complex applicationframework ET++. The
possibility to get the part of the documentatiorihatis relevantfor using a specialclassor
method,evenwhen it is spreadover many superclassesnadereusinga complex class
library much easier.

Table 1 givesanimpressionof the reusefactor of existingdocumentationThe application
framework ET++ consists of 229 classes and about 3400 methods, of which only 35 classes

-12 -

Object-Oriented Documentation Johannes Sametinger

documented all all documente(all documented all
framework | framework | application| framework| framework| application| application
classes classes classes methods methods methods methods
number 35 229 58 518 3 403 178 1 159
written
sections 9.1 1.4 0.0 8.7 1.3 0.0 0.0
inherited
sections 12.4 1.9 19.9 0.0 0.0 8.5 1.3
client
sections 15.6 2.4 15.9 6.7 1.0 7.5 1.2
heir 19.5 3.0 19.9 7.7 1.2 8.5 1.3
sections : :
friend
sections 21.5 3.3 19.9 8.7 1.3 8.5 1.3

Table 1: Documentation Statistics of ET++ and an Example Application

and about 500 methods are documented. On the average about 9 docunssdatinshad
been written for botltlassesand methods.Classesadditionally inherit an averageof about
12 sections from their superclasses. This results in about 16, 20, and 21 sectibestfyr
heirs, and friends of a class, respectively.In this example methodsnever inherit doc-
umentation. Thistemsfrom the fact that the sameschemehad beenusedto documentthe
methods.

Obviously, the 35 documentedET++ classesarethe onesthat are most often reused.An

application program (DOgMA itself) that is based on ET++ coneisE8 classesand about
1100 methods Beforewe startedto write application-specificdocumentationthe applica-
tion's classeshad an averageof about 15 client and about 19 heir and friend sections
already. Please note that the number of heir and friend sergieqaalfor the application's
classes and methods because at that time there was no private docunfenttiteapplica-
tion. The application'snethodsthat inherit documentatiorhavean averageof 7 to 9 docu-
mentationsections.The averagenumberof sectionsof all applicationmethodsis relatively
low because there are maagplication-specifianethodsthat do not existin the application
framework and thus cannot inherit any documentation.

The experiment with the documentatiohET++ demonstratethe usefulnesof object-ori-
enteddocumentationWe believethat reusingdocumentatiorcan even be improved when
possiblereuseis in the mind of documentatiorwriters. Besides the distinction of private,

-13-

Object-Oriented Documentation Johannes Sametinger

protected and publisectionshasto be considerednore carefully. This, naturally, was not
done by the creators of the ET++ documentation.

Conclusion

We presented a possildecumentatiorstructurefor object-orientedsoftwaresystems.The
suggested structure organizes the documentation a saettionsfor classesand methods.

By applying object-oriented techniques, i.e., inheritance and informiaitiomg, to the doc-
umentation also, reusability, modifiability, and organizability can grdsgtignrichedfor the
documentationThe presentednechanism#iavebeenintegratednto an existing browsing

tool that now enables users to access relevant documentatiandastsily. Experiencehas
shown that the reuse process can be drastically improved by providing comfortablécaccess
relevant information in both the source code and in the corresponding documentation.

Further important steps in improving thaality and the accessibilityof systemdocumenta-
tion will be achievedby applyingthe conceptof hypertext(see[Con87]) andliterate pro-
gramming(see[Knu84]). We madeexperiencewith the combinationof theseconcepts
already (see [Sam92a]), and believe that together with object-oriented technelagy be
able to drastically reduce the documentation problem.

References

[ANS83] IEEE StandardGlossaryof Software EngineeringTerminology, ANSI/IEEE
Std 729-1983, The Institute of Electrical and Electronics Engineers, Inc., 1983.

[Con87] Conklin J.: Hypertext: An Introduction and Survey, Computer, VolNaf, 9,
pp. 17-41, September 1987.

[Knu84] Knuth D.E.: Literate Programming, The Computer Journal, 6No. 2, pp.
97-111, 1984.

[Mey87] Meyer B.: Object-Oriented Software Construction, Prentice Hall, 1988.
[Pom86] Pomberger G.: Software Engineering and Modula-2, Prentice Hall, 1986.

[Sam92a] Sametingerd., PombergerG. A Hypertext System for Literate C++ Pro-
gramming, Journal of Object-Oriented Programming ¥olNo. 8, pp. 24-29,
Jan. 1992.

[Sam92b] Sametingerd. DOgMA: A Tool for the Documentationand Maintenanceof
Software Systems. VWGO, 1992.

-14 -

Object-Oriented Documentation Johannes Sametinger

[Sam93] Sametinger Jand StritzingerA. A DocumentatiorSchemeor Object-Oriented
Software Systems. OOPS Messenger, 1993.

[Stro1] StroustrupB.: The C++ ProgrammingLanguage(SecondEdition), Addison-
Wesley, 1991.

[WeiB9] WeinandA., GammaE., Marty R.: Designand Implementationof ET++, a
SeamlessObject-OrientedApplication Framework, StructuredProgramming,
Vol. 10, No.2, 1989.

-15-

