
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO.4, DECEMBER 1976308

THOMAS J. McCABE

Abstract- This paper describes a graph-theoretic complexity measure
and illustrates how it can be used to manage and control program com-
plexity .The paper first explains how the graph-theory concepts apply
and gives an intuitive explanation of the graph concepts in programming
terms. The control graphs of several actual Fortran programs are then
presented to illustrate the conelation between intuitive complexity and
the graph-theoretic complexity .Several properties of the graph-
theoretic complexity are then proved which show, for example, that
complexity is independent of physical size (adding or subtracting
functional statements leaves complexity unchanged) and complexity
depends only on the decision structure of a program.

The issue of using non structured control flow)s also discussed. A
characterization of nonstructured control graphs is given and a method
of measuring the "structuredness" of a program is developed. The re-
lationship between structure and reducibility is illustrated with several
examples.

The last section of this paper deals with a testing methodology used
in conjunction with the complexity measure; a testing strategy is de-
fined that dictates that a program can either admit of a certain minimal
testing level or the program can be structurally reduced.

Index Temls-Basis, complexity measure, control flow, decomposi-

tion, graph theory , independence, linear, modularization, programming,
reduction, software, testing.

II. A COMPLEXITY MEASURE

In this sl~ction a mathematical technique for program mod-
ularization will be developed. A few defmitions and theorems
from graph theory will be needed, but several examples will
be presented in order to illustrate the applications of the

technique.
The complexity measure approach we will take is to mea-

sure and control the number of paths through a program. This
approach, however, immediately raises the following nasty
problem: "Any program with a backward branch potentially
has an infinite number of paths." Although it is possible to
defme a set of algebraic expressions that give the total number
of possible paths through a (structured) program,l using the
total number of paths has been found to be impractical. Be-
cause of this the complexity measure developed here is defmed
in terms of basic paths-that when taken in combinatio~ will

generate every possible path.
The following mathematical preliminaries will be needed, all

of which can be found in Berge [I] .
Definition 1: The cyclomatic number V(G) of a graph G

with n vertices, e edges, and p connected components is

v(G) = e -n + p.

Theorem 1: In a strongly connected graph G, the cyclo-
matic number is equal to the maximum number of linearly
independent circuits.

The applications of the above theorem will be made as
follows: Given a program we will associate with it a directed
graph that has unique entry and exit nodes. Each node in the
graph corre,~ponds to a block of code in the program where the
flow is sequential and the arcs correspond to branches taken in
the program. This graph is classically known as the program
control graph (see Ledgard [6]) and it is assumed that each
node can be reached by the entry node and each node can
reach the e:dt node. For example, the following is a program /
control graph with entry node "a" and exit node "f."

I. INTRODUCTION

T HERE is a critical questi?n facing software engineering
today: How to modularlZe a software system so the
resulting modules are both testable and maintainable?

That the issues of testability and maintainability are impor-
tant is borne out by the fact that we often spend half of the
development time in testing [2] and can spend most of our
dollars maintaining systems [3] .What is neededjs a mathe-
matical technique that will provide a quantitative basis for
modularization and allow us to identify software modules
that will be difficult to test or maintain. This paper reports
on an effort to develop such a mathematical technique which
is based on program control flow.

One currently used practice that attempts to ensure a reason-
able modularization is to limit programs by physical size
(e.g., IBM-50 lines, TRW-2 pages). This technique is not
adequate, which can be demonstrated by imagining a 50 line
program consisting of 25 consecutive "IF THEN" constructs.
Such a program could have as many as 33.5 million distinct
control paths, only a small percentage of which would prob-
ably e'ler be tested. Many such examples of live Fortran pro-
grams that are physically small but untestable have been iden-
tilled and analyzed by the tools described in this paper .

-,
I
I
,

,

G:

Manuscript received April 10, 1976.
The author is with the Department of Defense, National Security

Agency, Ft. Meade, MD 20755. 1 See the Appendix

MC CASE: A COMPLEXITY MEASURE 309

CYCtoMATIC COMPLEXITY
*v = e -n + 2p

v=1-2+2=1

v=4.4+2=2

Theorem 1 is applied to G in the following way. -Imagine that
the exit node (f) branches back to the entry node (a). The
control graph G is now strongly connected (there is a path
joining any pair of arbitrary distinct vertices) so Theorem 1
applies. Therefore, the maximum number of linearly indepen-
dent circuits in G is 9-6+2. For example, one could choose
the following 5 independent circuits in G:

Bl: (abefa), (beb), (abea), (acfa), (adcfa).

It follows that Bl forms a basis for the set of all circuits in G
and any path through G can be expressed as a linear combina-
tion of circuits from Bl. For instance, the path (abeabebebef)
is expressable as (abea) +2(beb) + (abefa). To see how this
works its necessary to number the edges on G as in

Now for each member of the basis Bl associate a vector as

follows:

Notice that the sequence of an arbitrary number of nodes al-
ways has unit complexity and that cyclomatic complexity
conforms to our intuitive notion of "minimum number of
paths." Several properties of cyclomatic complexity are stated
below:

I) v(G)~l.
2) v(G) is the maximum number of linearly independent

paths in G; it is the size of a basis set.
3) Inserting or deleting functional statements to G does not

affect v(G).
4) G has only one path if and only if v(G) = I.

5) Inserting a new edge in G increases v(G) by unity.
6) v(G) depends only on the decision structure of G.

III. WORKING EXPERIENCE WITH THE
COMPLEXITY MEASURE

In this section a system which automates the complexity
measure will be described. The control structures of several
PDP-1O Fortran programs and their corresponding complexity
measures will be illustrated.

To aid the author's research into control structure complex-
ity a tool was built to run on a PDP.1O that analyzes the
structure of Fortran programs. The tool, FLOW, was written
in APL to input the source code from Fortran ftles on disk.
FLOW would then break a Fortran job into distinct subrou-
tines and analyze the control structure of each subroutine. It
does this by breaking the Fortran subroutines into blocks that
are delimited by statements that affect control flow: IF, GOTO ,
referenced LABELS, DO, etc. The flow between the blbCks is
then represented in an n by n matrix (where n is the number
of blocks), having a 1 in the i-jth position if block i can branch
to block j in 1 step. FLOW also produces the "blocked" listing
of the original program, computes the cyclomatic complexity,
and produces a reachability matrix (there is a 1 in the i-jth
position if block i can branch to block j in any number of
steps). An example of FLOW'S output is shown below.

IMPLICIT INTEGER(A-Z)
COMMON I ALLOC I MEM(20..8),LM,LU,LV,LW,LX,LY,LQ,LWEX

NCHARS,NWORDS
DIMENSION MEMORY(20..8),INHEAD(..),ITRANS(128)
TYPE 1
FORMATl'DOMOLKI STRUCTURE FIL:: NAME?' $)
NAMDML=O
ACCEPT 2,N...MDML
FORMAT(AS)
CALL ALCHAII(ICHAN)
CALL IFIL::(ICHAN,'DSK' ,NAMDML,'DAT',O,O)
CALL READB(ICliAN,I!IHrAD,I~2,NREAD,$990,$99Q)
NCHARS=INH£AIJ(li
NWORDS=INHEAD(:)

12345 678910
(abefa) lOO lOO 0 1 0 1

(beb) 000 1 lOO 00 0

(abea) lOO 100 000 0

(acfa) 0 1 0 0 0 1 0 00 1

(adcfa) 00 1 00 1 1 00 1

The path (abea(be)3fa) corresponds to the vector 2004200111

and the vector addition of (abefa), 2(beb), and (abea) yields

the desired result.
In using Theorem lone can choose a basis set of circuits

that correspond to paths through the program. The set B2 is a

basis of program paths.

B2: (abef), (abeabef), (abebef), (acf), (adcf).

linear combination of paths in B2 will also generate any path.

For example,

(abea(be)3 f) = 2(abebef) -(abef)

and

(a(be)2abef) = (a(be)2f) + (abeabef) -(abef).

The overall strategy will be to measure the complexity of a

program by computing the number of linearly independent

paths v(G), control the "size" of programs by setting an upper
limit to v(G) (instead of using just physical size), and use the

cyclomatic complexity as the basis for a testing methodology .
A few simple examples may help to illustrate. Beloware the

control graphs of the usual constructs used in structured pro-

gramming and their respective complexities.
*The role of the variable p will be explained in Section IV .For these

examples assume p = 1.

310 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1976

HTCT=(NCHAitS+7)-NWORj)S

LTOT={NCHARS+5)"NWORDS
' BLOCK 00. 1 IF(LTOT,GT,20'1B) GO TO 900

" BlOCK 00. 2 CALL P.EADB(ICHAH,MEHORY.LTOT,NREAD,$990,$9S0)

LH=O

LU=HCHARS"""WORDS+LH

LV=NWORDS+LU

LW=NWORDS+LV

LX=NWORDS+LW

LY=NWORDS+LX

LQ=HWORDS+LY

LWEX=NWORDS+LQ

*M B7~ 1~:,~WORD~ Ki:HORY(LWEX+J)=(MEHORY(LW+I),OR,(MEHORY(LW+I)"2»

700 CONTINUE

...*..*. BIOCKOO. 4 *...* *..

CALL EXTEXT(ITRANS)

STOP
.*..*..* BLOCK /(). S *..** * **.

900 TYPE3,LTOT

3 FORMAT\'STRUCTURE TOO LARGE FOR CORE; ',19,' WORDS'
, SEE COOPER' I)

STOP
** *. BlOCK /(). 6 *...*.**...* **..

990 TYPE $

'I FORMAT(' READ ERROR. I!R STRUCTURE FlU ERROR; , 1
, SEE COOPER' 1)

STOP

END

V(G).z

V(G)=3

CONNECTIVITY MATRIX

34567

1 °11°°°0 0000010

6001000

0001100

! ° ° 0 1° ° I °

~0000001

cP ° Q)oc ° ° °

.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL CYCLOMATIC COMPLEXITY : 3

1 2 4 6 7

END

At this point a few of the control graphs that were found in
live programs will be presented. The actual control graphs
from FLOW appear on a DATA DISK CRT but they are hand
drawn here for purposes of illustration. The graphs are pre-
sented in increasing order of complexity in order to suggest
the correlation between the complexity numbers and our in.
tuitive notion of control flow complexity.

MC CABE: A COMPLEXITY MEASURE 311

-
V(G)=B

,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1976312

MC CABE: A COMPLEXITY MEASURE 313

One of the more interesting aspects of the automatic approach is that although FLOW could be implemented much more effi-
ciently in a compiler level language , it is still possible to go through a year's worth of a programmer's Fortran code in about 20
min. After seeing several of a programmer's control graphs on a CRT one can often recognize "style" by noting similar patterns
in the graphs. For example, one programmer had an affinity for sequencing numerous simple loops as in

V(G)=19

Q
c

IEEE tRANSACTIONSON SOFTWAREENGINEERING;nECEMBF.R 1976314

ponents2 as MUAUB, Now, sincep = 3 we calculate complex-

ityas
v(MUAUB)= e- ii+ 2p = 13- 13+ 2X3 = 6.

This method with p*l can be used to calculate the complex-
ity of a collection of programs, particularly a hierarchial nest
of subroutines as shown above.

Notice that v(MUAUB) = v(M) + v(A) + v(B) = 6. In general,

the complexity of a collectionC of control graphs with k con-
nected components is equal to the summation of their com-
plexities. To see this let Cj, 1 ~i~ denote the k distinct con-
nected components, and let ej and nj be the number of edges
and nodes in the ith connected component. Then

k , k
v(C) = e -n + 2p = L ej- L nj + 2k

1 1

k k

=2: {ei- ni+2)=2:v(CJ.
1 1

It was later revealed that these programs were eventually to
ruft on a CDC6600 and the "tight" loops were designed fo stay
within the hardware stack.

These results have been used in an operationalenvironrnent
by advising project members to limit their software modules
by cyclomatic complexity instead of physical size. The par-
ticular upper bound that has been used for cyclomatic com-
plexity is 10 which seems like a reasonable, but not magical,
upper limit. Programmers have been required to calculate
complexity as they create software modules. When the com-
plexity exceeded 10 they had to either recognize and modularize
subfunctions or redo the software. The intention was to keep
the "size" of the modules manageable and allow for testing all
the independent paths (which will be elaborated upon in
Section VII.) The only situation in which this limit has seemed
unreasonable is when a large number of independent cases
followed a selection function (a large case statement), which
was allowed.

It has been interesting to note how individual programmer's
style relates to the complexity measure. The author has been
delighted to fmd several programmers who never had formal
training in structured programming but consistently write
code in the 3 to 7 complexity range which is quite well struc-
tured. On the other hand, FLOW has found several program-
mers who frequently wrote code in the 40 to 50 complexity
range (and who claimed there was no other way to do it). On
one occasion the author was given a DEC tape of 24 Fortran
subroutines that were part of a large real-time graphics system.
It was rather disquieting to fmd, in a system where reliability
is critical, subroutines of the following complexity: 16, 17,
24, 24, 32, 34, 41, 54, 56, and 64. Mter confronting the
project members with these results the author was told that
the subroutines on the DEC tape were chosen because they
were troublesome and indeed a close correlation was found
between the ranking of subroutines by complexity and a rank-
ing by reliability (performed by the project members).

v. SIMPLIFICATION

Since the calculation v =e -n + 2p can be quite tedious for

a programmer an effort has been made to simplify the com-

plexity calculations (for single-component graphs). There are

two results presented in this section-the first allows the com-
plexity calculations to be done in terms of program syntactic

constructs, the second permits an easier calculation from the

graph form.

In [7] Mills proves the following: if the number of function,

predicate, and collecting nodes in a structured program is 8, 1T ,

and 'Y, respectively, and e is the number of edges, then

e = 1 + 8 + 31T .

IV. DECOMPOSITION

The role of p in the complexity calculation v =e -n + 2p

will now be explained. Recall in Definition 1 that p is the

number of connected components. The way we defmed a pro-

gram control graph (unique entry and exit nodes, all nodes
reachable from -the entry , and the exit reachable from all

nodes) would result in all control graphs having only one con-
nected component. One could, however, imagine a main pro-

gram M and two called subroutines A and B having a control

structure shown below:

Since for every predicate node there is exactly one collec~ing

node and there are unique entry and exit nodes it follows that

n = 8 + 21T + 2.

Assuming p = I and substituting in v = e -n + 2 we get

v = (I + 8 + 31T) -(8 + 21T + 2) + 2 = 1T + I.

This proves that the cyclomatic complexity of a structured

program equals the number of predicates plus one, for exam-

ple in

0

G

A

M:

2 A graph is connected if for every pair of vertices there is a chain go-

ing from one to the other. Given a vertex a, the set of vertices that can
be connected to a, together with a itself is a connected component.Let us denote the total graph above with 3 connected com-

315MC CABE: A COMPLEXITY MEASURE

complexity v(G) = 11 + 1 = 3 + 1 = 4. Notice how in this case

complexity can be computed by simply counting the number

of predicates in the code and not having to deal with the con-

trol graph.
In practice compound predicates such as IF "c I AND c2"

THEN are treated as contributing two to complexity since

without the connective AND we would have

IF c 1 THEN IF c2 THEN

which has two predicates. For this reason and for testing pur-

poses it has been found to be more convenient to count con-

ditions instead of predicates when calculating complexity .3

It has been proved that in general the complexity of any (un-
structured) program is 11 + I.

The second simplification of the calculation of e -n + 2p

reduces the calculation of visual inspection of the control

graph. We need Euler's formula which is as follows. If G is a

connected plane graph with n vertices, e edges, and r regions,

then

n-e+r=2.

Just changing the order of the terms we get r = e -n + 2 so the

number of regions is equal to the cyclornatic complexity.

Given a program with a plane control graph one can therefore

calculate v by counting regions, as in

1r;-3

written with only these constructs. One of the difficulties
with this approach is it does not defme for programmers what
constructs they should not use, i.e., it does not tell them what
a structured program is not. If the programming population
had a notion of what constructs to avoid and they could see
the inherent difficulty in these constructs, perhaps the notion
of structuring programming would be more psychologically
palatable. A clear defmition of the constructs that structured
programming excludes would also sensitize programmers to
their use while programs are being created, which (if we be.
lieve in structured programming) would have a desirable effect.

One of the reasons that the author thinks this is important
is that as Knuth [4] points out-there is a time and a place
when an unstructured goto is needed. The author has had a
similar experience structuring Fortran jobs-there are a few
very specific conditions when an unstructured construct works
best. If it is the case that unstructured constructs should only
be allowed under special circumstances, one need then to dis.
tinguish between the programmer that makes judicious use of
a few unstructured goto's as compared to the programmer that
is addicted to them. What would help is first the defmition of
the unstructured components and second a measure of the
structureness of a program as well as the complexity of a

program.
Rao Kasaraju [5] has a result which is related-a flow graph

is reducibles to a structured program if and only if it does not
contain a loop with two or more exits. This is a deep result
but not, however, what we need since many programs that are
reducible to structured programs are not structured programs.
In order to have programmers explicitly identify and avoid
unstructured code we need a theorem that is analogous to a
theorem like Kuratowski's theorem in graph theory .Kuratow.
ski's theorem states that any nonplanar graph must contain at
least one of two specific nonplanar graphs that he describes.
The proof of nonplanarity of a graph is then reducible to
locating two specific subgraphs whereas showing nonplanarity
without Kuratowski's result is, in general, much more difficult.

The following four control structures were found to generate
all nonstructured programs.

G

~/' v(G) = 5

~

VI. NONSTRUCTURED PROGRAMMING

The main thrust in the recent popularization of structured

programming is to make programmers aware of a few syntactic

constructs4 and tell them that a structured program is one

~

u

A number of theorems and results will be stated below with-

out proof.

Result 1: A necessary and sufficient condition that a pro-

gram6 is nonstructured (one that is not written with just

3For the CASE construct with N cases use N-1 for the number of
conditions. Notice, once again, that a simulation of case with IF'S will
have N-1 conditions.

4The usual ones used (sometimes called D-structures) are

Q~vo ~O sReducibility here means the same function is computed with the
same actions and predicates although the control structure may differ.

6 Assuming the program does not contain unconditional GOTO's.

316 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1976

is branched into. So in this case we have a c) graph along with

the original b) graph.

Case 2: E is "after" the loop. The control graph would ap-

pear as follows:

b)

a)

Notice how a type a) graph must appear.
Case 3: E is independent of the loop.

would look as follows:

The control graph

D-structures) is thav it contains as a subgraph either a), b),
or c).

The reason why graph d) was slighted in Result I is that any
3 of the 4 graphs will generate all the unstructured programs-
this will be illustrated later. It is convenient to verbalize the
graphs a)-d), respectively, as follows:

a) branching out of a loop;
b)branching into a loop;
c)branchinginto a decision; and
d) branching out ofa decision.

The following version of Result 2 may seem more intuitively

appealing.
A structured program can be written by not "branching out

of or into a loop, or out of or into a decision."
The following result gives insight into why a nonstructured

program's logic often becomes convoluted and entwined.
Result 2: A nonstructured program cannot be just a little

nonstructured. That is any nonsiructured program must con-
tain at least 2 of the graphs a)-d). Part of the proof of Result
2 will be shown here because it helps to illustrate how the con-
trol flow in a nonstructuredprogram becomes entangled. We
show, for an example, how graph b) cannot occur alone. As-
suming we have graph b):

b)

\

The graph c) must now be present with b). If there is another
path that can go to a node after the loop from E then a type
d) graph is also generated. Things are often this bad, and in
factmuch worse.

Similar arguments can be made for each of the other non-
structured graphs to show that a)-d) cannot occur alone. If
one generates all the possible pairs from a)-d) it is interesting
to note that they all reduce to 4 basic types:

b)

(a ,b) (b,c)

"
the entry node E occurs either before, after, or from a node

independent of the loop. Each of these three cases will be

treated separately.

Case I: E is "before" the loop E is on a path from entry to

the loop so the program must have a graph as follows:

which leads us the following result.
Result 3: A necessary and sufficient condition for a pro.

gram to be nonstructured is that it contains at least one of: (a,
b), (a, d), (b, c), (c, d). Result 4 is now obvious.

Result 4: The cyclomatic complexity if a nonstructured
program is at least 3. It is interesting to notice that when the
orientation is taken off the edges each of the 4 basic graphs
a)-d) are isomorphic to the following nondirected graph.

c) 0
b)

Notice how E is a split node at the beginning of a decision that

MC CASE: A COMPLEXITY MEASURE 317

Notice in the nonstructured graphs below, however, that such

a reduction process is not possible.
Also if the graphs (a, b) through (c, d) have their directions

taken off they are all isomorphic to :

Gl: G2:

v=6

G3:

v=6

By examining the graphs (a, b) through (c, d) one can formu-
late a more elegant nonstructured characterization :

Result 5: A structured program can be written by not
branching out of loops or into decisions-a) and d) provide a
basis.

Result 6: A structured program c~ be written by not
branching into loops or out of decisions-b) and d) provide a
basis.

A way to measure the lack of structure in a program or flow
graph will be briefly commented upon. One of the. difficulties
with the nonstructured graphs mentioned above is that there is
no way they can be broken down into sub graphs with one
entry and one exit. This is a severe limitation since one way in
which program complexity can be controlled is to recognize
when the cyclomatic complexity becomes too large-and then
identify and remove subgraphs with unique entry and exit
nodes.

Result 7: A structured program is reducible 7 to a program

of unit complexity.
The following example illustrates how a structurcd program

can be reduced.

Let m be the number of proper subgraphs with unique entry
and exit nodes. Notice in Gl, G2, and G3 m is equal to 0, 1 ,
and 2, respectively. The following defmition of essential com-
plexity ev is used to reflect the lack of structure.

Definition: ev = v -n.
For the above graphs we have ev(Gl) = 6, ev(G2) = 5, and

ev(G3) = 4. Notice how the essential complexity indicates the

- -

v = 2 v = 1v = 3v = 4

7Reduction is the process of removing subgraphs (subroutines) with
unique entry and exit nodes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1976318

extent to which a graph can be reduced-Gl cannot be re-
duced at all since its complexity is equal to it~ essential com-
plexity. G2 and G3, however, can be reduced as follows:

G:

G2':

Suppose that ac = 2 and the two tested paths are [E, al , b, C2 ,

x] and [E,a2,b,cl,X]. Then given that paths [E,al,b,cl,

x] and [E, a2, b, C2, x] cannot be executed we have ac<v
so case 2 holds and G can be reduced by removing decision b

as in

G3':

Gl:

v(G3 ') =4

This last result is stated for completeness.

Result 8: The essential complexity of a structured program

is one.

Notice how in G v = ac and the complexity of G 1 is less than

the complexity of G.
In experience this approach is most helpful when program-

mers are required to document their flow graph and complex-
ity and show explicitly the different paths tested. It is often
the case when the actual number of paths tested is compared
with the cyclomatic complexity that several additional paths
are discovered that would normally be overlooked. It should
be noted that v is only the minimal number of independent
paths that should be tested. There are often additional paths
to test. It should also be noted that this procedure (like any
other testing method) will by no means guarantee or prove the
software-all it can do is surface more bugs and improve the
quality of the software .

Two more examples are presented without comment.

VII. A TESTING METHODOLOGY

The complexity measure v is designed to conform to our in-
tuitive notion of complexity and since we often spend as much
as 50 percent of our time in test and debug mode the measure
sho14d correlate closely with the amount of work required to
test a program. In this section the relationship between test-
ing and cyclomatic complexity will be defmed and a testing
methodology will be developed.

Let us assume that a program p has been written, its com-
plexity v has been calculated, and the number of paths tested
is ac (actual complexity). If ac is less than v then one of the
following conditions must be true :

I) there is more testing to be done (more paths to be tested);
2) the program flow graph can be reduced in complexity by

v-ac (v-ac decisions can be taken out); and
3) portions of the program can be reduced to in line code

(complexity has increased to conserve space).
Up to this point the complexity issue has been considered

purely in terms of the structure of the control flow. This
testing issue, however, is closely related to the data flow be-
cause it is the data behavior that either precludes or makes
realizable the execution of any particular control path. A few
simple examples may help to illustrate. Assume we start with
the foJlowing flow graph:

v=5

ac=S

MC CABE: A COMPLEXITY MEASURE

\.

~:

acdfghik
acefgijabk

0

~

v=2

ac=2

The program SEARCH below is used to illustrate. SEARCH

perfonns a binary search for input parameter ITEM on a table

T of length N. SEARCH sets F to 1 and J to ITEM'S index

within T if the search is successful-otherwise F is set to O in-

dicating that ITEM is not in T .

ApPENDiX
A method of computing the number of possible paths in a

structured program will be briefly outlined. This method asso-
ciates an algeb~aic expression C with each of the structured
constructs and assumes that the complexity of a basic func-
tional or replacement statement is one. The various syntactic
constructs used in structured programming and their control
flow and complexity expressions are shown below. The sym-
bol a stands for the number of iterations in a loop.

CO:'1'RO!. FLO'; C (CO:.;;'.RliC'-')

~ -*J C(A) X C(,,)

~ C(A),,(C(E)+C(C)1

A,b

IF A THEN !)

i.L51; C

"1iILE A DO " C(")+(C(.1\),,t:(~)la.;(;.;

PROCZDURE SI:ARCI: (ITEH) IN~EGER ITI:M

BEGIN
INTI:GER L. H;
F'6- O ;
~O;
H..N;

While H > L and F .O Do
If ~'[J < (lI+L) DIV 2J .item

TliI:N
If item T[J]

THI:N

II..J-l

I:LSI:

L4-J+l

C(h)X(C(j,)+.:(.;)+
+ C(~.) J

ELSE

F ..1
END

[C(,,) x C(;')]G The flow graph for SEARCH is

"-'1$

~.-.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1976320

[2] B. W. Boehm, ..Software and Its impact: A quantitative assess-
ment," Datamation, vol.19, pp. 48-S9,May1973.

[3] w. B. Cammack and H. J. Rogels, ..Imploving the plogramming
pIOceSS," IBM Tech. Rep. TR 00.2483, Oct. 1973.

[4] D. E. Knuth, «StructUIed plogramming with ooro statements,"
Computing Surveys, vol. 6, pp. 261-301, Dec. 1974.

[5] R. Kosaraju, "Analysis of structUIed ploglams," J. Comput. Syst.
Sci., vol. 9, pp. 232'-255, Dec. 1974; also, Dep. Elec. Eng., The
Johns Hopkins Univ., Baltimole, MD, Tech. Rep. 72-11,1972.

[6] H. Legard and M. Marcotty, " A genelalogy of control structUIes,"

Commun. Assoc. Comput. Mach., vol. 18, pp. 629-639, Nov.
1975.

[7] H. D. Mi1ls, "Mathematical foundations fOI structuled program-
ming," Federal System Division, IBM Corp., Gaithersburg, MD,
FSC 72-6012,1972.

The algebraic complexity C would be computed as

C(SEARCH) = I I I { I + (I [1[1 +1} + I})a I }

= { I + (3)a }.

Assuming I to be at least 4, the lower bound for the expression
{ I + 3a} is 4 whichiridicates there are at least 4 paths to be

tested. The first test would be from the immediate exit from
the WHILE loop which could be tested by choosing H less than

L initially. The next three tests (the three ways through the
body of the loop) correspond to cases where ITEM = T [J} ,

ITEM < T[I} , and ITEM > T[J}.

REFERENCES

[1] C. Berge, Graphs and Hypergraphs. Amsterdam, The Netherlands:

North-Holland,1973.

Thomas J. McCabe was born in Central Falls,
RI, on November 28, 1941. He received the
A.B. degree in mathematics from Providence
College, Providence, RI and the M.S. degree in
mathematics from the University of Connecti-
cut, Storrs, in 1964 and 1966, respectively.

He has been employed since 1966 by the
Department of Defense, National Security
Agency, Ft. Meade, MD in various systems pro-
gramming and programming management posi-
tions. He also, during a military leave, served as

a Captain in the Army Security Agency engaged in large-scale compiler
implementation and optimization. He has recently been active in soft-
ware engineering and has developed and taught various software related
courses for the Institute for Advanced Technology, the University of
California, and Massachusetts State College System.

MI. McCabe is a member of the American Mathematical Association.

