Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

=
collaboration

ﬁnvatinn

home syndeo news CoOmpany sarvices column CaArears contact us

Coding Conventions for %
C++ and Java |
a.p p I i Cati O n S Section Contents

Subscribe to our email list to be

notified by email when there is a
new Column.

Table of Contents

Archive of past columns

. . A full list of our software
Source Code Organization development articles from previous

weeks

o Files and project organization

Coding Conventions for C++ and

« Header Files

Java
Naming Conventions One of our most popular pages --
Coding conventions for C++ and
o Function Names Java, written by our Chief Architect

and used by our developers.
« Class Names

o Variable Names

Source Documentation powered by

« Module Comments and Revision History w

« Commenting Data Declarations

« Commenting Control Structures

« Commenting Routines

Programming Conventions Check out our
4 y Experts at

. Use of Macros SolutionCentral

« Constants and Enumerations

e« Use of return, goto and throw for flow control

e« Error Handling

« Style and Layout

Testing/Debug Support

e Class Invariant

e Assertions and Defensive Programming

« Validation Tests

« Tracing
Conclusion

http://www.macadamian.com/codingconventions.htm (1 of 16) [10/1/2000 7:12:06 PM]

http://www.macadamian.com/index.html
http://www.macadamian.com/syndeo/index.html
http://www.macadamian.com/news/index.html
http://www.macadamian.com/company/index.html
http://www.macadamian.com/services/index.html
http://www.macadamian.com/column/index.html
http://www.macadamian.com/careers/index.html
http://www.macadamian.com/contactus/index.html
http://www.macadamian.com/column/subscribe.html
http://www.macadamian.com/column/columnlist.html
http://www.macadamian.com/syndeo/index.html
http://www.solutioncentral.com/macadamejb

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

o Glossary
« References

« History
« Other Coding Conventions on the Web

Source Code Organization

Files and project organization

The name of files can be more than eight characters, with a mix of upper case and
lower-case. The name of files should reflect the content of the file as clearly as possible.

As a rule of thumb, files containing class definitions and implementations should contain
only one class. The name of the file should be the same as the name of the class. Files
can contain more than one class when inner classes or private classes are used.

Special care should be given to the naming of header files because of potential

conflicts between modules. If necessary, a module prefix could be added to x“ xe
the filename. For example, if two modules have a garbage collector class: O)
Database and Window, the files could be named: "DBGarbageCollector.H" and 1:ﬂlqab

"WINDOWGarbageCollector.H".

The following table illustrates the standard file extensions used.

Extension Description

.C C Source Files

.CPP C++ Source files

.H C/C++ Header files

.INL C++ Inline function files

.IDL (.ODL) Interface Description language
.RC Resource Script

Java Java Source file

Header Files

Include Statements {"QG‘-‘
Include statements should never refer to a header file in terms of absolute path. For
example, the following statement:

#i ncl ude "/ code/ Tel ephonyMyr/ | ncl ude/ TMPhoneLi ne. h"
is wrong, while:

#i ncl ude " TMPPhonelLi ne. h"

is right provided that the makefile has the appropriate paths set-up for compilation.
Also:

#i ncl ude "../include/ TMPhoneLi ne. h"

http://www.macadamian.com/codingconventions.htm (2 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

is also right if the project topology is a "relative" topology where include files could be
gathered in common areas.

Multiple Inclusion of a header file

As you probably know, multiple inclusion of a header file can have unexpected and
unwanted effects. To avoid this, guarding pre-compiler code must be added to every
header file.

#i f ndef _TMPhoneLine_H_

#define _TMPhonelLine_H_
Rest of Header File ...

#endi f // _TMPhoneLine H_

To avoid the possibility of a naming conflict, DevStudio will often append a GUID to the
filename in the #define statement. This is not a necessary practice unless it is used to
avoid an existing conflict.

The use of the "#pragma once" directive is allowed and encouraged to optimize
compilation times. However, it doesn't replace the #ifndef guarding block because it is a
non-standard extension of Microsoft's compiler and therefore not portable. Ideally, every
header file should look like this.

#pragma once
#i fndef _Filenane_H_
#define _Filenane_H_

Rest of Header File ...

#endif // _Filenane_H_

All header files must be self-sufficient, such that a module including the file does not
need to explicitly include other header files required by the interface. The header file
must include other header files depended upon.

Naming Conventions

Function Names

Class member functions follow Java conventional naming. The function name is a
concatenated string of words with the first letter of all word capitalized except for the
first one. For example: isMemberSet, printReport, consume.

Functions exported from DLLs, that are not in a class or a namespace should

include an uppercase abbreviation of the module name. For example: x"‘ N
DEBUGTrace or DBGTrace. {:.-Qar,{‘
&

A good name for a routine clearly describes everything the routine does. Here

are guidelines for creating effective routine names. (The guidelines are quoted from
[MCCOO01]. In this context, we should not consider procedures that only return an error
code as functions. They should be seen a procedures.)

http://www.macadamian.com/codingconventions.htm (3 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

For a procedure name, use a strong verb followed by an object. A procedure with
functional cohesion usually performs an operation on an object. The name should reflect
what the procedure does, and an operation on an object implies a verb-plus-object
name. printReport(), calcMonthlyRevenues(), and repaginateDocument() are samples of
good procedure names.

In object-oriented languages, you don't need to include the name of the object in the
procedure name because the object itself is included in the call.

For a function name, use a description of the return value. A function returns a
value, and the function should be named for the value it returns. For example, cos(),
nextCustomerlD(), printerReady(), and currentPenColor() are all good function names
that indicate precisely what the functions return.

Avoid meaningless or wishy-washy verbs. Some verbs are elastic, stretched to
cover just about any meaning. Routine names like handleCalculation(),
performServices(), processinput(), and dealWithOutput() don't tell you what the routines
do. At the most, these names tell you that the routines have something to do with
calculations, services, input, and output. The exception would be when the verb "handle"
was used in the specific technical sense of handling an event.

Sometimes, the only problem with a routine is that its name is wishy-washy, the routine
itself might actually be well designed. If handleOutput() is replaced with
formatAndPrintOutput(), you have a pretty good idea of what the routine does.

In other cases, the verb is vague because the operations performed by the routine are
vague. The routine suffers from a weakness of purpose, and the weak name is a
symptom. If that's the case, the best solution is to restructure the routine and any
related routines so that they all have stronger purposes and stronger names that
accurately describe them.

The properties of a class should be accessible through getter and/or setter
methods. Those methods should always be declared like this:

public get();
public void set(a);
For boolean properties, the use of "is" can replace the "get":
publ i c bool ean is();
Examples:
Col or get Current PenCol or ()

voi d set Current PenCol or (Col or c)
bool ean i sPrinterReady()

voi d set Print er Ready(bool ean ready)

Class Names

Classes follow Java conventional naming. The name is a concatenated string of words
with the first letter of all word capitalized. For example: FocusEvent, DeviceContext,
Customer.

Interface names follow COM conventional naming. The name is a concatenated string of

http://www.macadamian.com/codingconventions.htm (4 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

words with the first letter of all word capitalized. A capital "I" is used as a prefix. For
example: IWindowModel, lUnknown.

Variable Names

Variable names are a concatenated string of words with the first letter of all word
capitalized except for the first one. The name chosen should clearly represent the
content of the variable. For example: windowHandle, eventConsumed, index.

All variables that are a member of a class should have a "m_" prefix. For example:
m_windowHandle, m_eventConsumed, m_index.

Constant (static final for Java) variables make exception to all these rules. They should
follow the same standard as C++ #define statements. Constant variables should be
named using capitalized names separated by an underscore character (*_"). For example:
MAX_ARRAY_LENGTH, SIZE_PROPERTY_NAME.

Source Documentation

When applicable, all source documentation should be in a format compatible with
JavaDoc formatting. However, it is important that the formatting codes included in the
comment blocks do not overwhelm the comment block. Don't forget that the comment
block is meant to be read in the source first.

Inline comments should be made with the "//" comment style and should be indented at
the same level as the code they describe. End of line comments should be avoided with
the exception of function parameters.

Module Comments and Revision history

Module headers are block headers placed at the top of every implementation file. The
block comment should contain enough information to tell the programmer if she reached
her destination.

/*
** FILE: filename. cpp

** ABSTRACT:
** A general description of the nodule's role in the
It overall software architecture, What services it

** provi des and how it interacts with other conponents.

** DOCUMENTS:

** A reference to the applicabl e design docunents.

http://www.macadamian.com/codingconventions.htm (5 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

** AUTHOR:

IE Your nanme here
** CREATI ON DATE:
A 14/ 03/ 1998

** NOTES:
e O her relevant i nfornmati on
*/

Note that all the block comments illustrated in this document have no pretty stars on the
right side of the block comment. This deliberate choice was made because aligning those
pretty stars is a large waste of time and discourages the maintenance of in-line
comments.

It is sometimes useful to include a history of changes in the source files. With all the new
source control tools now available, this information is duplicated in the source control
database.

If you choose, you can use a revision history block in your modules. However, only use
the revision history block if you intend to maintain it. It is pretty much useless when it's
not maintained properly.

Here's the preferred style for a revision history block:
/ *
** Hl STORY:
** 000 - Nov 91 - M Taylor - Creation

** 001 - Dec 91 - J. Brander - Insert validation for
** unitlength to detect
** buffer overfl ow

*/

Commenting Data Declarations

Comments for variable declarations describe aspects of the variable that the name can't
describe.

Comment the units of numeric data. If a number represents lengths, indicate
whether it is expressed in inches, feet, meters or kilometers. If its time, indicate whether
it's expressed in elapsed seconds since 1-1-1980, milliseconds since the start of the
program and so on.

Comment the range of allowable numeric values. If a variable has an expected
range of values, document the expected range.

http://www.macadamian.com/codingconventions.htm (6 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

Document flags to the bit level. If a variable is used as a bit field, document the
meaning of each bit.

Document global data. If global data is used, annotate each piece well at the point
which it is declared. The annotation should indicate the purpose of the data and why it
needs to be global.

Commenting Control Structures

The place before a control structure is usually a natural place to put a comment. If it is
an if or a case statement, you can provide the reason for the decision and a summary of
the outcome. If it is a loop, you can indicate the purpose of the loop.

Commenting Routines

Here are a few guidelines about commenting routines.

Describe each routine in one or two sentences at the top of the routine. If you
can't describe the routine in a short sentence or two, you probably need to think harder
about what it is supposed to do. It might be a sign that the design isn't as good as it
should be. Don't be tempted to explain everything in the block header. Instead, add
comments in the code close to the code that it is commenting. It will be much more
tempting to maintain those comments if the code changes.

In the block header, indicate which variables are input and output variables. To
help describe the interface of a method, attributes similar to the ones used in .IDL could
be used. ([in], [out], [in, out]) In addition, the return of function should also be
described.

Document variables where they are declared. If you're not using global data, the
easiest way to document variables is to put comments next to their declarations.

Document interface assumptions. Like the fact that a variable has to be initialized
before being passed.

Comment on the routine’'s limitations. If the routine provides a numeric result,
document the accuracy of the result. If the computations are undefined under certain
conditions, document the conditions. If you ran into gotchas during the development of
the routine, document them too.

Document the routine’'s global effect. If the routine modifies global data, describe
exactly what it does to the global data. Don't forget that global data is as much a part of
your interface as parameters are.

Document the source of algorithms that are used. If you have used an algorithm
from a book or magazine, document the volume and page number you took it from. If
you developed the algorithm yourself, indicate where the reader can find the notes
you've made about it.

Programming Conventions

http://www.macadamian.com/codingconventions.htm (7 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

Use of Macros

8¢
In the past, parameterized macros were used frequently instead of simple Qar.-
routines. This was done mostly for performance reasons. This is not 9
necessary with compilers that are more modern because they can be replaced
by inline routines.
Macros are very hard to debug because the compiler doesn't generate the proper
symbols for it. Unless they are necessary for conditional compilation or a similar
purpose, they should not be used and should be replaced by inline routines.
Constants and Enumerations .

x g

It is generally good practice to replace literal values (strings and numbers) by {"Qar"
a more descriptive identifier. It is very frequent to see #define statements
used to create those identifiers.

Instead of using a #define statement, constant variables should be used. Constant
variables carry type information and are protected by the compiler from some dangerous
forms of "implicit" translation. Furthermore, the debugger can show the value of a
constant variable. It cannot show the value of a #define identifier.

For similar reasons, enumerated types should be used for defining groups of values that
are related together. (Flags passed to a routine for example)

Use of return, goto and throw for flow control

According to [MCCOO01]:

Computer scientists are zealous in their beliefs, and when the discussion turns to
gotos, they get out their jousting poles, armor and maces, mount their horses and
charge through the gates of Camelot to the holy wars.

According to common programmer lore:

Each function must have a single entry and exit structure.

The use of multiple return statements to return control from a function may only
occur to handle error exits.

The use of gotos should be avoided at all costs.

Most programmers agree with these guidelines and they are good ideas in principle.
In practice however, it is not rare to see a routine that needs more than one exit
structure. The major risk of using returns to prematurely leave a routine is to leave
some resources behind. Cleaver use of classes makes it easier for resources to be

picked-up in case of a premature exit. This is one of the ideas behind CStrings and
smart pointers.

One simple way to avoid multiple exit points is to use a goto statement. This will be
considered the only acceptable use of a goto statement. If your routine needs to
terminate prematurely and has resources to clean-up, the use of a goto is allowed if it is
used in the following manner:

HRESULT t heRouti ne()

{
HRESULT theResult = S COK;

http://www.macadamian.com/codingconventions.htm (8 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

? Sonme code here ?
i f (SonmeExceptional Condition)
{
theResult = S FAI LED
got o RoutineCd eanup
}
? Sonme nore code here ?
Rout i ned eanup:
? Free the resources used by the routine ?

return theResult;

}

In java, the same example can be written using the finally() clause:
i nt theRoutine()

{
int theResult = S K
try
{

? Sone code here ?

i f (SomeExceptional Condition)
{

t hrow new Super Excepti on();

}

? Sone nore code here ?

}
finally()

{

? Free the resources used by the routine ?

}

return theResult;

}

In the case of exceptional conditions, it is sometimes useful to simply throw an

http://www.macadamian.com/codingconventions.htm (9 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

exception. If you want to use the throw statement, you have to exercise the same
cautions as when using the return statement. Throw statements constitute an exit point
of your routine and your have to make sure that all the resources that the routine uses
are cleaned-up automatically. Fortunately, objects declared on the stack will be
cleaned-up properly.

In addition, routines that throw exceptions must mention it in their documentation. If
you are the caller of routines that can throw exceptions, it is important that you prepare
for that eventuality. You can decide to catch the exception yourself and handle it. You
can also decide to let it pass through. If you do, you must behave as if you were
throwing the exception yourself and mention it in your documentation. For Java
programs, in addition to mentioning the exception in your documentation, adding the
throws clause is mandatory.

Never forget that exceptions should be used for exceptional conditions. They are a
heavyweight technique for controlling flow. They shouldn't be used for "casual” flow
control because they are slow.

If you are writing a routine that is accessible through a COM interface, you
cannot throw exceptions as COM doesn't support it. x"‘_&p

Pointers to objects declared on the stack will not be freed
automatically when an exception is thrown. x"‘{:p

C
Error Handling c;p“b

Many programmers think that:

As a rule, all functions calls returning diagnostic data (i.e. indication of success,
failure, time-out, error, etc.?) should be followed by error checking code.

In certain situations, when no meaningful error handling may be devised,
diagnostic return data can be ignored. Such cases, however, form the exception
rather than the norm and have to be individually justified and commented.

Again, this is a very good idea in principle. However, this can lead to two things:
« No one will write routines that send a return value.
« More than 90 percent or your program is going to be error handling code.
Let's try those guidelines instead.

A failure should never leave a class in an undefined state. The class can be put in
a state where it can't do much but it should be a defined state. For example, if you are
writing a file class, failure to open the physical file shouldn't put the class in limbo. The
class can't do much else but it will not fail.

An error should be detected and handled if it affects the execution of the rest of
a routine. For example, if you try to allocate a resource and it fails, this affects the rest
of the routine if it uses that resource. This should be detected and proper action taken.
However, if releasing a resource fails, it doesn't affect the rest of the routine? It can
therefore be ignored. (What are you going to do about it anyway?)

In an error is detected in a routine, consider notifying your caller. If the error has
a potential to affect your caller, it is important that the caller be notified. For example,
the "Open" methods of a file class should return error conditions. Even if the class stays
in a valid state and other calls to the class will be handled properly, the caller might be
interested in doing some error handling of his own.

http://www.macadamian.com/codingconventions.htm (10 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

Don't forget that error handling code is code. It can also be defective. It is
important to write a test case that will exercise that code.

Don't design a routine where error conditions are identified as a special case of
an "out” parameter. Instead, use a specific error condition parameter. That will make
the logic of the caller much simpler and easier to understand. For example, try and avoid
methods that return null to identify a specific error case.

Style and Layout

Layout, like goto is a religious issue with most programmers. Layout is more like the
aesthetic aspect of code and that is mostly a matter of personal preference.

However, one should not forget that the fundamental theorem of formatting is that good
visual layout should show the logical structure of the program. A complete chapter of
Code Complete [MCCOO01] is dedicated to code layout.

Layout Styles

This document presents one layout style called the "Begin-end” . You can can add
personal variations to the style but it is important that you stay consistent and that the
layout style doesn't change through a single file.

Note: All "tabs" in the proposed layout are set to 2 spaces. The settings of your editor
should be set to replace all tabs with spaces.
voi d checkSormet hi ng(
i nt firstParaneter,
string secondPar anet er)
{
char currentChar;
doSorret hi ng() ;
whil e (condition)
{
doSorret hi ng() ;
doSormet hi ngEl se();
if (condition)
doSoret hi ng() ;
switch (condition)
{
case CASE 1:

doSorret hi ng() ;

http://www.macadamian.com/codingconventions.htm (11 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

br eak;

case CASE _2:

{
doSonet hi ng() ;
br eak;

}

def aul t:

doSonet hi ng() ;

}
Complicated Expressions

For complicated expressions, separate conditions should be on separate lines.

For example:

if ((?0" <= inputChar && inputChar <= ?9") || (?a" <= inputChar
&& nput Char <= ?z') || (?A" <= inputChar && i nputChar <= ?Z'))
{

doSonet hi ng(i nput Char) ;

}
Should be replaced by:

if ((?0" <= inputChar && inputChar <= ?9') ||
(?a" <= inputChar && inputChar <= ?z') ||
(?A" <= inputChar && inputChar <= ?Z'))

doSonet hi ng(i nput Char put) ;
}

Large Function Calls

When a routine has a large parameter list, or when its name is very long, typing it all in
one single line makes the program hard to read. The preferred way to layout such a
function is to align the parameters with the end of the function name to make it stand

http://www.macadamian.com/codingconventions.htm (12 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc
out.
dr awLi ne(W ndow. nort h,

W ndow. sout h,
W ndow. east,
W ndow. west ,
current Wdt h,

current Hei ght) ;

When the function name is very long or the variables passed as parameters have long
names. The parameters should be aligned 2 characters passed the name of the method.

thed i ent W ndow. dr awFi | | edPol yl i ne(
W ndow. nort h,
W ndow. sout h,
W ndow. east ,
W ndow. west ,
current Wdt h,
current Hei ght ,

nor mal Backgr oundFi | | Col or) ;

Testing/Debug Support

In this section, the term "non-trivial routine” Is used. There is no formal definition of a
non-trivial routine. The definition is left to the programmer at coding time and to the
reviewer at review time.

Class Invariant

According to [MCGRO1]:

The class invariant is a statement about constraints on objects that belong to the
class. These constraints should always be maintained by the implementation.

In other words, the class invariant is a condition that always holds true for a class no
matter what state it's in. For example: The invariant for a queue class might contain a
clause that requires that the current size of the queue be between zero and the
maximum size of the queue inclusive.

Every class should supply a function to perform a sanity check on the class that will
verify if the class invariant holds.

Assertions and Defensive Programming

Each non-trivial routine in your classes should have the following parts before performing

http://www.macadamian.com/codingconventions.htm (13 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

any actions.

The routine should call the sanity check method to verify that

Sanity check the class invariant still holds.

The routine should verify that all the parameters passed to the
routine are valid in their type, value and range.

An invalid parameter that would disrupt the behavior of the
routine should be caught at this point and terminate the routine.

Parameter checking

In addition to performing the sanity check for the class, the
routine should make sure that the class is in a proper state for
this routine to be called. For example, you can't remove an item
from a list if it is empty.

Method Invariant

All of these checks should use an ASSERT statement to complain loudly if something
goes wrong. In a release build, those ASSERT statements should be compiled-out.

Don't use assertions to check error codes of a function. If a function can fail, you
should handle the error with "real” error handling code, not an assertion. You can still
use an assertion to complain loudly for debugging purposes.

Use assertions to guard pieces of code that should never logically be executed.
Like virtual methods that you expect to be overwritten by a derived class or the default
clause of a switch statement.

Don't forget that assertions are compiled-out of production code. Don't put
anything else but conditions in ASSERT statements. Any code put into an assertion
statement will not be executed in the production version of you program. For example,
don't do:

ASSERT(pFile = fopen(...) != NULL);
How much defensive programming should be left in production code?

Remove code that hinders performance. In your debug build, special error checking
code has the potential to reduce the performance of a system. If this is the case, it is
important to remove that code from the production build.

Leave in code that checks for important errors. Decide which errors can slip
through the cracks without too much effect. For example, a test that verifies that a
string fits in a dialog is only a cosmetic check and can be removed. However, a test that
verifies that states are valid for telephony events should stay in because it might result
in dropped calls.

Leave in code that helps the program crash gracefully. If your routine performs
validation on the parameters it receives and this helps your function degrade gracefully
when parameters are wrong, that code should be left in.

See that the messages you leave in the code are friendly. Never forget that the
messages you display for debugging and tracing might make it in production code.

Validation Tests

If possible, build tests into your subsystems instead of on top of them. If you know of a
second algorithm that can test your first one (even if it much slower or takes more
memory), code it and put it in debug code, running alongside with your production code.

http://www.macadamian.com/codingconventions.htm (14 of 16) [10/1/2000 7:12:06 PM]

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

If you optimize an algorithm in your system, the old algorithm can make a very good
validation test. Have it run with your new algorithm and ASSERT that the results are the
same.

You shouldn't worry too much about the performance of the system in this case because
your validation test will be compiled-out of production code.

Conclusion
Glossary
Term Description

A related group of classes. Usually used to implement a feature or

Class Category | \nction of the system

COM Component Object Model. Microsoft's Object technology
DevStudio Microsoft's development environment.

GUID Globally Unigue Identifier

References

MAGUO1 |Writing Solid Code, Steve Maguire, Microsoft Press
MCCOO1 |Code Complete, Steve Mcconnel, Microsoft Press
Functional testing of classes, John D. McGregor Dept. of C.S. Clemson

MCGRO1 University
History
Date Contributor Comments

16/01/1998 |Francis Beaudet |[Creation

Added standard for function naming of property
20/01/1998 |Claude Monpetit |accessors.
Added the mandatory use of the throws clause.

Added the mention of the "spaces for tabs" note.

Fred Boulanger |Added the creation date to the module header.
Stephane Lussier |Clarified the portion about commenting parameters.
Clarified the restriction for the "one class per file" rule.

22/01/98

Other Coding Conventions on the Web

Java Coding Standard by Doug Lea, Professor of Computer Science, State University of
New York

http://www.macadamian.com/codingconventions.htm (15 of 16) [10/1/2000 7:12:06 PM]

http://gee.cs.oswego.edu/dl/html/javaCodingStd.html

Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

Writing Robust Java Code - AmbySoft's Java Coding Standards

Disclaimer and other small print: The code in this article is provided "as is". Any express or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the author or contributors be liable for any direct indirect, incedental, special, exemplary,
or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use,
data, profits, or limbs; or business interruption) however caused and on any theory of liability, whether in contract,
strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software code, even
if advised of the possiblity of such damage.

[HOME] [SYNDEO] [NEWS] [COMPANY] [SERVICES] [COLUMN] [CAREERS] [CONTACT US]

Macadamian Technologies Inc. - info@macadamian.com - 613.739.5976

Copyright 1998 - Macadamian Technologies Inc. - All Rights Reserved

To Comment on our Web Site - webmaster@macadamian.com

http://www.macadamian.com/codingconventions.htm (16 of 16) [10/1/2000 7:12:06 PM]

http://www.ambysoft.com/javaCodingStandards.html
http://www.macadamian.com/index.html
http://www.macadamian.com/syndeo/index.html
http://www.macadamian.com/news/index.html
http://www.macadamian.com/company/index.html
http://www.macadamian.com/services/index.html
http://www.macadamian.com/column/index.html
http://www.macadamian.com/careers/index.html
http://www.macadamian.com/contactus/index.html
mailto:info@macadamian.com
mailto:webmaster@macadamian.com

	macadamian.com
	Coding Conventions for C++ and Java applications - Macadamian Technologies Inc

