
C++

C++ Programming Style Guidelines
Geotechnical Software Services

Version 2.3, September 2000

Copyright © 1996 - 2000

 

Table of Content
1 Introduction

1.1 Layout of the Recommendations❍   

1.2 Recommendations Importance❍   

●   

2 General Recommendations●   

3 Naming Conventions●   

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (1 of 22) [10/1/2000 6:57:12 PM]



3.1 General❍   

3.2 Specific❍   

4 Files

4.1 Source Files❍   

4.2 Include Files and Include Statements❍   

●   

5 Statements

5.1 Types❍   

5.2 Variables❍   

5.3 Loops❍   

5.4 Conditionals❍   

5.5 Miscellaneous❍   

●   

6 Layout and Comments

6.1 Layout❍   

6.2 White space❍   

6.3 Comments❍   

●   

8 References●   

1 Introduction
This document lists C++ coding recommendations common in the C++ development community.

The recommendations are based on established standards collected from a number of sources,
individual experience, local requirements/needs, as well as suggestions given in [1] - [4].

There are several reasons for introducing a new guideline rather than just referring to the ones above.
Main reason is that these guides are far too general in their scope and that more specific rules
(especially naming rules) need to be established. Also, the present guide has an annotated form that
makes it far easier to use during project code reviews than most other existing guidelines. In addition,
programming recommendations generally tend to mix style issues with language technical issues in a
somewhat confusing manner. The present document does not contain any C++ technical
recommendations at all, but focuses mainly on programming style. For guidelines on C++
programming style refer to the C++ Programming Practice Guidelines.

While a given development environment (IDE) can improve the readability of code by access
visibility, color coding, automatic formatting and so on, the programmer should never rely on such
features. Source code should always be considered larger than the IDE it is developed within and
should be written in a way that maximize its readability independent of any IDE.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (2 of 22) [10/1/2000 6:57:12 PM]

http://www.geosoft.no/cpp.html


1.1 Layout of the Recommendations.

The recommendations are grouped by topic and each recommendation is numbered to make it easier
to refer to during reviews.

Layout of the recommendations is as follows:

Guideline short description
Example if applicable

Motivation, background and additional information.

The motivation section is important. Coding standards and guidelines tend to start "religious wars",
and it is important to state the background for the recommendation.

1.2 Recommendation Importance

In the guideline sections the terms must, should and can have special meaning. A must requirement
must be followed, a should is a strong recommendation, and a can is a general guideline.

2 General Recommendations

1. Any violation to the guide is allowed if it enhances readability.

The main goal of the recommendation is to improve readability and thereby the understanding and
the maintainability and general quality of the code. It is impossible to cover all the specific cases in
a general guide and the programmer should be flexible.

2. The rules can be violated if there are strong personal objections against them.

The attempt is to make a guideline, not to force a particular coding style onto individuals.
Experienced programmers normally want adopt a style like this anyway, but having one, and at least
requiring everyone to get familiar with it, usually makes people start thinking about programming
style and evaluate their own habits in this area.

On the other hand, new and inexperienced programmers normally use a style guide as a convenience
of getting into the programming jargon more easily.

3 Naming Conventions

3.1 General Naming Conventions

3. Names representing types must be in mixed case starting with upper case.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (3 of 22) [10/1/2000 6:57:12 PM]



Line, SavingsAccount

Common practice in the C++ development community.

4. Variable names must be in mixed case starting with lower case.
line, savingsAccount

Common practice in the C++ development community. Makes variables easy to distinguish from
types, and effectively resolves potential naming collision as in the declaration Line line;

5. Named constants (including enumeration values) must be all uppercase using underscore to
separate words.
MAX_ITERATIONS, COLOR_RED, PI

Common practice in the C++ development community. In general, the use of such constants should
be minimized. In many cases implementing the value as a method is a better choice:

int getMaxIterations()     // NOT: MAX_ITERATIONS = 25
{
  return 25;
}

This form is both easier to read, and it ensures a unified interface towards class values.

6. Names representing methods or functions must be verbs and written in mixed case starting with
lower case.
getName(), computeTotalWidth()

Common practice in the C++ development community. This is identical to variable names, but
functions in C++ are already distingushable from variables by their specific form.

7. Names representing namespaces should be all lowercase.
analyzer, iomanager, mainwindow

Common practice in the C++ development community.

8. Names representing template types should be a single uppercase letter.
template<class T> ...
template<class C, class D> ...

Common practice in the C++ development community. This makes template names stand out
relative to all other names used.

9. Abbreviations and acronyms must not be uppercase when used as name [4].
exportHtmlSource();    // NOT: exportHTMLSource();
openDvdPlayer();       // NOT: openDVDPlayer();

Using all uppercase for the base name will give conflicts with the naming conventions given above.
A variable of this type whould have to be named dVD, hTML etc. which obviously is not very
readable. Another problem is illustrated in the examples above; When the name is connected to
another, the readbility is seriously reduced; the word following the abbreviation does not stand out
as it should.

10. Global variables should always be referred to using the :: operator.
::mainWindow.open(), ::applicationContext.getName()

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (4 of 22) [10/1/2000 6:57:12 PM]



In general, the use of global variables should be avoided. Consider using singleton objects instead.

11. Private class variables should have underscore suffix.
class SomeClass {
  private:
    int  length_;
}

Apart from its name and its type, the scope of a variable is its most important feature. Indicating
class scope by using underscore makes it easy to distinguish class variables from local scratch
variables. This is important because class variables are considered to have higher significance than
method variables, and should be treated with special care by the programmer.

A side effect of the underscore naming convention is that it nicely resolves the problem of finding
reasonable variable names for setter methods and constructors:

void setDepth (int depth)
{
  depth_ = depth;
}

An issue is whether the underscore should be added as a prefix or as a suffix. Both practices are
commonly used, but the latter is recommended because it seem to best preserve the readability of
the name.

It should be noted that scope identification in variables has been a controversial issue for quite some
time. It seems, though, that this practice now is gaining acceptance and that it is becoming more and
more common as a convention in the professional development community.

12. Generic variables should have the same name as their type.
void setTopic (Topic topic)      // NOT: void setTopic (Topic
value)
                                 // NOT: void setTopic (Topic
aTopic)
                                 // NOT: void setTopic (Topic x)

void connect (Database database) // NOT: void connect (Database db)
                                 // NOT: void connect (Database
oracleDB)

Reduce complexity by reducing the number of terms and names used. Also makes it easy to deduce
the type given a variable name only.

If for some reason this convention doesn't seem to fit it is a strong indication that the type name is
badly chosen.

Non-generic variables have a role. These variables can often be named by combining role and type:

Point startingPoint, centerPoint;
Name  loginName;

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (5 of 22) [10/1/2000 6:57:12 PM]



13. All names should be written in english.
fileName;    // NOT:   filNavn

English is the prefered language for international development.

14. Variables with a large scope should have long names, variables with a small scope can have
short names [1].

Scratch variables used for temporary storage or indices are best kept short. A programmer reading
such variables should be able to assume that its value is not used outside a few lines of code.
Common scratch variables for integers are i, j, k, m, n and for characters c and d.

15. The name of the object is implicit, and should be avoided in a method name.
line.getLength();    // NOT:  line.getLineLength();

The latter seems natural in the class declaration, but proves superfluous in use, as shown in the
example.

3.2 Specific Naming Conventions

17. The terms get/set must be used where an attribute is accessed directly.
employee.getName();       matrix.getElement (2, 4);
employee.setName (name);  matrix.setElement (2, 4, value);

Common practice in the C++ development community. In Java this convention has become more or
less standard.

18. The term compute can be used in methods where something is computed.
valueSet->computeAverage();  matrix->computeInverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used
repeatedly, he might consider caching the result. Consistent use of the term enhances readability.

19. The term find can be used in methods where something is looked up.
vertex.findNearestVertex();   matrix.findMinElement(); 

Give the reader the immediate clue that this is a simple look up method with a minimum of
computations involved. Consistent use of the term enhances readability.

20. The term initialize can be used where an object or a concept is established.
printer.initializeFontSet();

The american initialize should be preferred over the english initialise. Abbreviation init should be
avoided.

21. Variables representing GUI components should be suffixed by the component type name.
mainWindow, propertiesDialog, widthScale, loginText, leftScrollbar,
mainForm, fileMenu, minLabel, exitButton, yesToggle etc.

Enhances readability since the name gives the user an immediate clue of the type of the variable and
thereby the objects resources.

22. The suffix List should be used on names representing a list of objects.
vertex (one vertex),   vertexList (a list of vertices)

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (6 of 22) [10/1/2000 6:57:12 PM]



Enhances readability since the name gives the user an immediate clue of the type of the variable and
the operations that can be performed on the object.

Simply using the plural form of the base class name for a list (matrixElement (one matrix
element), matrixElements (list of matrix elements)) must be avoided since the two only differ
in a single character and are thereby difficult to distinguish.

A list in this context is the compound data type that can be traversed backwards, forwards, etc.
(typically an STL vector). A plain array is simpler. The suffix Array can be used to denote an
array of objects.

23. The prefix n should be used for variables representing a number of objects.
nPoints, nLines

The notation is taken from mathematics where it is an established convention for indicating a
number of objects.

24.The suffix No should be used for variables representing an entity number.
tableNo, employeeNo

The notation is taken from mathematics where it is an established convention for indicating an
entity number.

An alternative approach is to prefix such variables with an i: iTable, iEmployee. This is more
elegant, but less common.

25. Iterator variables should be called i, j, k etc.
for (int i = 0; i < nTables); i++) {
  :
}

vector<MyClass>::iterator i;
for (i = list.begin(); i != list.end(); i++) {
  Element element = *i;
  ...
}

The notation is taken from mathematics where it is an established convention for indicating
iterators.

26. The prefix is should be used for boolean variables and methods.
isSet, isVisible, isFinished, isFound, isOpen

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (7 of 22) [10/1/2000 6:57:12 PM]



Common practice in the C++ development community and partially enforced in Java.

Using the is prefix solves a common problem of choosing bad boolean names like status or
flag. isStatus or isFlag simply doesn't fit, and the programmer is forced to choose more
meaningful names.

There are a few alternatives to the is prefix that fits better in some situations. These are the has, can
and should prefixes:

bool hasLicense();
bool canEvaluate();
bool shouldSort();

27. Complement names must be used for complement operations [1].
get/set, add/remove, create/destroy, start/stop, insert/delete,
increment/decrement, old/new, begin/end, first/last, up/down,
min/max, next/previous, old/new, open/close, show/hide,
suspend/resume, etc.

Reduce complexity by symmetry.

28. Abbreviations in names should be avoided.
computeAverage();     // NOT:  compAvg();

There are two types of words to consider. First are the common words listed in a language
dictionary. These must never be abbreviated. Never write:

cmd   instead of   command
cp    instead of   copy
pt    instead of   point
comp  instead of   compute
init  instead of   initialize
etc.

Then there are domain specific phrases that are more naturally known through their
abbreviations/acronym. These phrases should be kept abbreviated. Never write:

HypertextMarkupLanguage  instead of   html
CentralProcessingUnit    instead of   cpu
PriceEarningRatio        instead of   pe
etc.

29. Naming pointers specifically should be avoided.
Line *line;   // NOT:  Line *pLine;  or Line *linePtr;  etc.

Many variables in a C/C++ environment are pointers, so a convention like this is almost impossible
to follow. Also objects in C++ are often oblique types where the specific implementation should be
ignored by the programmer. Only when the actual type of an object is of special significance, the
name should empahsize the type.

30. Negated boolean variable names must be avoided.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (8 of 22) [10/1/2000 6:57:12 PM]



bool isError;    // NOT:   isNoError 
bool isFound;    // NOT:   isNotFound

The problem arises when such a name is used in conjunction with the logical negation operator as
this results in a double negative. It is not immediately apparent what !isNotFound means.

31. Enumeration constants can be prefixed by a common type name.
enum Color {
  COLOR_RED,
  COLOR_GREEN,
  COLOR_BLUE
};

This gives additional information of where the declaration can be found, which constants belongs
together, and what concept the constants represent.

An alternative approach is to always refer to the constants through their common type:
Color::RED, Airline::AIR_FRANCE etc.

32. Exception classes should be suffixed with Exception.
class AccessException
{
  :
}

Exception classes are really not part of the main design of the program, and naming them like this
makes them stand out relative to the other classes.

33. Functions (methods returning something) should be named after what they return and
procedures (void methods) after what they do.

Increase readability. Makes it clear what the unit should do and especially all the things it is not
supposed to do. This again makes it easier to keep the code clean of side effects.

4 Files

4.1 Source Files

34. C++ header files should have the extension .h. Source files can have the extension .c++
(recommended), .C, .cc or .cpp.
MyClass.c++, MyClass.h

These are all accepted C++ standards for file extension.

35. A class should be declared in a header file and defined in a source file where the name of the
files match the name of the class.
MyClass.h, MyClass.c++

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (9 of 22) [10/1/2000 6:57:12 PM]



Makes it easy to find the associated files of a given class. This convention is enforced in Java and
has become very successful as such.

36. All definitions should reside in source files.
class MyClass
{
  public:
    int getValue () {return value_;} // NO!
    ...
  private:
    int value_;
}

The header files should declare an interface, the source file should implement it. When looking for
an implementation, the programmer should always know that it is found in the source file. The
obvious exception to this rule is of course inline functions that must be defined in the header file.

37. File content must be kept within 80 columns.

80 columns is a common dimension for editors, terminal emulators, printers and debuggers, and
files that are shared between several people should keep within these constraints. It improves
readability when unintentional line breaks are avoided when passing a file between programmers.

38. Special characters like TAB and page break must be avoided.

These characters are bound to cause problem for editors, printers, terminal emulators or debuggers
when used in a multi-programmer, multi-platform environment.

39. The incompleteness of split lines must be made obvious [1].
totalSum = a + b + c +
           d + e;
function (param1, param2,
          param3);
setText ("Long line split"
         "into two parts.");
for (tableNo = 0; tableNo < nTables;
     tableNo += tableStep)

Split lines occurs when a statement exceed the 80 column limit given above. It is difficult to give
rigid rules for how lines should be split, but the examples above should give a general hint.

In general:

Break after a comma.●   

Break after an operator.●   

Align the new line with the beginning of the expression on the previous line.●   

4.2 Include Files and Include Statements

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (10 of 22) [10/1/2000 6:57:12 PM]



40. Header files must include a construction that prevents multiple inclusion. The convention is an
all uppercase construction of the module name, the file name and the h suffix.
#ifndef MOD_FILENAME_H
#define MOD_FILENAME_H
 :
#endif

The construction is to avoid compilation errors. The name convention is common practice. The
construction should appear in the top of the file (before the file header) so file parsing is aborted
immediately and compilation time is reduced.

41. Include statements should be sorted and grouped. Sorted by their hierarchical position in the
system with low level files included first. Leave an empty line between groups of include
statements.
#include <fstream>
#include <iomanip>

#include <Xm/Xm.h>
#include <Xm/ToggleB.h>

#include "ui/PropertiesDialog.h"
#include "ui/MainWindow.h"

In addition to show the reader the individual include files, it also give an immediate clue about the
modules that are involved.

42. Include statements must be located at the top of a file only.

Common practice. Avoid unwanted compilation side effects by "hidden" include statements deep
into a source file.

5 Statements

5.1 Types

43. Types that are local to one file only can be declared inside that file.

Enforces information hiding.

44. The parts of a class must be sorted public, protected and private [2][3]. All sections must be
identified explicitly. Not applicable sections should be left out.

The ordering is "most public first" so people who only wish to use the class can stop reading when
they reach the protected/private sections.

45. Type conversions must always be done explicitly. Never rely on implicit type conversion.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (11 of 22) [10/1/2000 6:57:12 PM]



floatValue = static_cast<float> (intValue);    // YES!
floatValue = intValue;                         // NO!

By this, the programmer indicates that he is aware of the different types involved and that the mix is
intentional.

5.2 Variables

46. Variables should be initialized where they are declared.

This ensures that variables are valid at any time. Sometimes it is impossible to initialize a variable to
a valid value where it is declared:

int x, y, z;
getCenter (&x, &y, &z);

In these cases it should be left uninitialized rather than initialized to some phony value.

47. Variables must never have dual meaning.

Enhance readability by ensuring all concepts are represented uniquely. Reduce chance of error by
side effects.

48. Use of global variables should be minimized.

In C++ there is no reason global variables need to be used at all. The same is true for global
functions or file scope (static) variables.

49. Class variables should never be declared public.

The concept of C++ information hiding and encapsulation is violated by public variables. Use
private variables and access functions instead. One exception to this rule is when the class is
essentially a data structure, with no behavior (equivalent to a C struct). In this case it is
appropriate to make the class' instance variables public [2].

Note that structs are kept in C++ for compatibility with C only, and avoiding them increases the
readability of the code by reducing the number of constructs used. Use a class instead.

50. Related variables of the same type can be declared in a common statement [3].
Unrelated variables should not be declared in the same statement.
float  x, y, z;
float  revenueJanuary, revenueFebruary, revenueMarch;

The common requirement of having declarations on separate lines is not useful in the situations like
the ones above. It enhances readability to group variables like this.

51. C++ pointers and references should have their reference symbol next to the variable name rather
than to the type name [3].
float *x;    // NOT:  float* x;
int   &y;    // NOT:  int&   y;

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (12 of 22) [10/1/2000 6:57:12 PM]



It is debatable whether a pointer is a variable of a pointer type (float*  x) or a pointer to a given type
(float  *x). Important in the recommendation given though is the fact that it is impossible to declare
more than one pointer in a given statement using the first approach. I.e. float* x, y, z; is equivalent
with float *x; float y; float z; The same goes for references.

52. The const keyword should be listed before the type name.
void f1 (const Widget *v)     // NOT: void f1 (Widget const *v)

Neither is better nor worse, but since the former is more commonly used that should be the
convention.

53. Implicit test for 0 should not be used other than for boolean variables and pointers.
if (nLines != 0)    // NOT:   if (nLines)
if (value != 0.0)   // NOT:   if (value)

It is not necessarily defined by the compiler that ints and floats 0 are implemented as binary 0. Also,
by using explicit test the statement give immediate clue of the type being tested. It is common also
to suggest that pointers shouldn't test implicit for 0 either, i.e. if (line == 0) instead of if
(line). The latter is regarded as such a common practice in C/C++ however that it can be used.

54. Variables should be declared in the smallest scope possible.

Keeping the operations on a variable within a small scope, it is easier to control the effects and side
effects of the variable.

5.3 Loops

55. Only loop control statements must be included in the for() construction.
sum = 0;                   // NOT: for (i = 0, sum = 0; i < 100;
i++)
for (i = 0; i < 100; i++)  //        sum += value[i];
  sum += value[i];

Increase maintainability and readability. Make it crystal clear what controls the loop and what the
loop contains.

56. Loop variables should be initialized immediately before the loop.
isDone = false;       // NOT:   bool isDone = false;
while (!isDone) {     //          :
  :                   //        while (!isDone) {
}                     //          :
                                }

57. do-while loops can be avoided.

do-while loops are less readable than ordinary while loops and for loops since the conditional
is at the bottom of the loop. The reader must scan the entire loop in order to understand the scope of
the loop.

In addition, do-while loops are not needed. Any do-while loop can easily be rewritten into a
while loop or a for loop. Reducing the number of constructs used enhance readbility.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (13 of 22) [10/1/2000 6:57:12 PM]



58. The use of break and continue in loops should be avoided.

These constructs can be compared to goto and they should only be used if they prove to have higher
readability than their structured counterpart.

60. The form while(true) should be used for infinite loops.
while (true) {
  :
}

for (;;) { // NO!
  :
}

while (1) { // NO!
  :
}

Testing against 1 is neither necessary nor meaningful. The form for (;;) is not very readable,
and it is not apparent that this actually is an infinite loop.

5.4 Conditionals

61. Complex conditional expressions must be avoided. Introduce temporary boolean variables
instead [1].
if ((elementNo < 0) || (elementNo > maxElement)||
    elementNo == lastElement) {
  :
}

should be replaced by:

isFinished      = (elementNo < 0) || (elementNo > maxElement);
isRepeatedEntry = elementNo == lastElement;
if (isFinished || isRepeatedEntry) {
  :
}

By assigning boolean variables to expressions, the program gets automatic documentation. The
construction will be easier to read and to debug.

62. The nominal case should be put in the if-part and the exception in the else-part of an if statement
[1].

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (14 of 22) [10/1/2000 6:57:12 PM]



isError = readFile (fileName);
if (!isError) {
  :
}
else {
  :
}

Makes sure that the exceptions don't obscure the normal path of execution. This is important for
both the readability and performance.

63. The conditional should be put on a separate line.
if (isDone)              // NOT:  if (isDone) doCleanup();
  doCleanup();

This is for debugging purposes. When writing on a single line, it is not apparent whether the test is
really true or not.

64. Executable statements in conditionals must be avoided.
// Bad!
if (!(fileHandle = open (fileName, "w"))) {
  :
}

// Better!
fileHandle = open (fileName, "w");
if (!fileHandle) {
  :
}

Conditionals with executable statements are just very difficult to read. This is especially true for
programmers new to C/C++.

5.5 Miscellaneous

65. The use of magic numbers in the code should be avoided. Numbers other than 0 and 1 should be
considered declared as named constants instead.

If the number does not have an obvious meaning by itself, the readability is enhanced by
introducing a named constant instead. A different approach is to introduce a method from which the
constant can be accessed.

66. Functions must always have the return value explicitly listed.
int getValue()     // NOT: getValue()
{
  :
}

If not exlicitly listed, C++ implies int return value for functions. A programmer must never rely on
this feature, since this might be confusing for programmers not aware of this artifact.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (15 of 22) [10/1/2000 6:57:12 PM]



67. goto should not be used.

Goto statements violates the idea of structured code. Only in some very few cases (for instance
breaking out of deeply nested structures) should goto be considered, and only if the alternative
structured counterpart is proven to be less readable.

68. "0" should be used instead of "NULL".

NULLis part of the standard C library, but is made obsolete in C++.

6 Layout and Comments

6.1 Layout

69. Basic indentation should be 2.
for (i = 0; i < nElements; i++)
  a[i] = 0;

Indentation of 1 is to small to emphasize the logical layout of the code. Indentation larger than 4
makes deeply nested code difficult to read and increase the chance that the lines must be split.
Choosing between indentation of 2, 3 and 4,  2 and 4 are the more common, and 2 chosen to reduce
the chance of splitting code lines.

70. Block layout should be as illustrated in example 1 below (recommended) or example 2, and
must not be as shown in example 3 [4]. Function and class blocks must use the block layout of
example 2.

while (!done) {
  doSomething();
  done = moreToDo();
}

while (!done)
{
  doSomething();
  done = moreToDo();
}

while (!done)
  {
    doSomething();
    done = moreToDo();
  }

Example 3 introduce an extra indentation level which doesn't emphasize the logical structure of the
code as clearly as example 1 and 2. 

71. The class declarations should have the following form:
class SomeClass : public BaseClass
{
  public:
    ...
  protected:
    ...
  private:
    ...
}

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (16 of 22) [10/1/2000 6:57:12 PM]



This follows partly from the general block rule above.

72. The function declarations should have the following form:
void someMethod()
{
  ...
}

This follows from the general block rule above.

73. The if-else class of statements should have the following form:
if (condition) {
  statements;
}

if (condition) {
  statements;
}
else {
  statements;
}

if (condition) {
  statements;
}
else if (condition) {
  statements;
}
else {
  statements;
}

This follows partly from the general block rule above. However, it might be discussed if an else
clause should be on the same line as the closing bracket of the previous if or else clause:

if (condition) {
  statements;
} else {
  statements;
}

This is equivalent to the Sun recommendation. The chosen approach is considered better in the way
that each part of the if-else statement is written on separate lines of the file. This should make it
easier to manipulate the statement, for instance when moving else clauses around.

74. A for statement should have the following form:

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (17 of 22) [10/1/2000 6:57:12 PM]



for (initialization; condition; update) {
  statements;
}

This follows from the general block rule above.

75. An empty for statement should have the following form:
for (initialization; condition; update)
  ;

This emphasize the fact that the for statement is empty and it makes it obvious for the reader that
this is intentional. Empty loops should be avoided however.

76. A while statement should have the following form:
while (condition) {
  statements;
}

This follows from the general block rule above.

77. A do-while statement should have the following form:
do {
  statements;
} while (condition);

This follows from the general block rule above.

78. A switch statement should have the following form:
switch (condition) {
  case ABC :
    statements;
    // Fallthrough

  case DEF :
    statements;
    break;

  case XYZ :
    statements;
    break;

  default :
    statements;
    break;
}

Note that each case keyword is indented relative to the switch statement as a whole. This makes
the entire switch statement stand out. Note also the extra space before the : character. The explicit
Fallthrough comment should be included whenever there is a case statement without a break
statement. Leaving the break out is a common error, and it must be made clear that it is intentional
when it is not there.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (18 of 22) [10/1/2000 6:57:12 PM]



79. A try-catch statement should have the following form:
try {
  statements;
}
catch (Exception exception) {
  statements;
}

This follows partly from the general block rule above. The discussion about closing brackets for
if-else statements apply to the try-catch statments.

80. Single statement if-else, for or while statements can be written without brackets.
if (condition)
  statement;

while (condition)
  statement;

for (initialization; condition; update)
  statement;

It is a common recommendation (Sun Java recommendation included) that brackets should always
be used in all these cases. However, brackets are in general a language construct that groups several
statements. Brackets are per definition superfluous on a single statement.

81. The function return type can be put in the left column immediately above the function name.
void
MyClass::myMethod (void)
{
  :
}

This makes it easier to spot function names within a file since one can assume that they all start in
the first column.

6.2 White Space

82.
- Conventional operators should be surrounded by a space character.
- C++ reserved words should be followed by a white space.
- Commas should be followed by a white space.
- Colons should be surrounded by white space.
- Semicolons in for statments should be followed by a space character.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (19 of 22) [10/1/2000 6:57:12 PM]



a = (b + c) * d;            // NOT:   a=(b+c)*d
while (true) {              // NOT:   while(true) ...
doSomething (a, b, c, d);   // NOT:   doSomething (a,b,c,d);
case 100 :                  // NOT:   case 100:
for (i = 0; i < 10; i++) {  // NOT:   for (i=0;i<10;i++){

Makes the individual components of the statements stand out. Enhances readability. It is difficult to
give a complete list of the suggested use of whitespace in C++ code. The examples above however
should give a general idea of the intentions.

83. Method names should be followed by a white space when it is followed by another name.
doSomething (currentFile);    // NOT:   doSomething(currentFile);

Makes the individual names stand out. Enhances readability. When no name follows, the space can
be omitted (doSomething()) since there is no doubt about the name in this case.

An alternative to this approach is to require a space after the opening parenthesis. Those that adhere
to this standard usually also leave a space before the closing parentheses: doSomething(
currentFile );. This do make the individual names stand out as is the intention, but the space
before the closing parenthesis is rather artificial, and without this space the statement looks rather
asymmetrical (doSomething( currentFile);).

84. Logical units within a block should be separated by one blank line.

Enhance readability by introducing white space between logical units of a block.

85. Methods should be separated by three blank lines.

By making the space larger than space within a method, the methods will stand out within the file.

86. Variables in declarations should be left aligned.
AsciiFile  *file;
int        nPoints;
float      x, y;

Enhance readability. The variables are easier to spot from the types by alignment.

87. Use alignment wherever it enhanbces readability.
if      (a == lowValue)    compueSomething();
else if (a == mediumValue) computeSomethingElse();
else if (a == highValue)   computeSomethingElseYet();

value = (potential        * oilDensity)   / constant1 +
        (depth            * waterDensity) / constant2 +
        (zCoordinateValue * gasDensity)   / constant3;

minPosition     = computeDistance (min,     x, y, z);
averagePosition = computeDistance (average, x, y, z);

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (20 of 22) [10/1/2000 6:57:12 PM]



switch (value) {
  case PHASE_OIL   : strcpy (string, "Oil");   break;
  case PHASE_WATER : strcpy (string, "Water"); break;
  case PHASE_GAS   : strcpy (string, "Gas");   break;
}

There are a number of places in the code where white space can be included to enhance readability
even if this violates common guidelines. Many of these cases have to do with code alignment.
General guidelines on code alignment are difficult to give, but the examples above should give a
general clue.

6.3 Comments

88. Tricky code should not be commented but rewritten! [1]

In general, the use of comments should be minimized by making the code self-documenting by
appropriate name choices and an explicit logical structure.

89. All comments should be written in english [2].

In an international environment english is the preferred language.

90. Use // for all comments, including multi-line comments.
// Comment spanning
// more than one line.

Since multilevel C-commenting is not supported, using // comments ensure that it is always possible
to comment out entire sections of a file using /* */ for debugging purposes etc.

There should be a space between the "//" and the actual comment, and comments should always start
with an upper case letter and end with a period.

91. Comments should be included relative to their position in the code. [1]
while (true) {          // NOT:    while (true) {
  // Do something       //         // Do something
  something();          //             something();
}                       //         }

This is to avoid that the comments break the logical structure of the program.

92. Class and method header comments should follow the JavaDoc conventions.

Regarding standardized class and method documentation the Java development community is far
more mature than the C++. This is of course becuase Java includes a tool for extracting such
comments and produce high quality hypertext documentation from it.

There have never been a common convention for writing this kind of documentation in C++, so
when choosing between inventing your own convention, and using an existing one, the latter option
seem natural. Also, there are JavaDoc tools for C++ available. See for instance Doc++.

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (21 of 22) [10/1/2000 6:57:12 PM]

http://www.zib.de/Visual/software/doc++/


8 References
[1] Code Complete, Steve McConnel - Microsoft Press

[2] Programming in C++, Rules and Recommendations, M Henricson, e. Nyquist,  Ellemtel (Swedish
telecom)
      http:// www.doc.ic.ac.uk/lab/cplus/c%2b%2b.rules/

[3] Wildfire C++ Programming Style, Keith Gabryelski, Wildfire Communications Inc.
      http:// www.wildfire.com/~ag/Engineering/Development/C++Style/

[4] C++ Coding Standard, Todd Hoff
      http:// http://www.possibility.com/Cpp/CppCodingStandard.htm

© 1999 Geotechnical Software Services. All rights reserved.
This page is maintained by webmaster@geosoft.no

C++ Programming Style Guidelines 

http://www.geosoft.no/style.html (22 of 22) [10/1/2000 6:57:12 PM]

http://www.doc.ic.ac.uk/lab/cplus/c%2b%2b.rules/
http://www.wildfire.com/~ag/Engineering/Development/C++Style/
http://www.possibility.com/Cpp/CppCodingStandard.html
mailto:webmaster@geosoft.no
http://www.w3.org/

	www.geosoft.no
	C++ Programming Style Guidelines 


