
Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

Version 3.2d (9 Jan 2000) for FunnelWeb V3.2

THIS REFERENCE MANUAL provides a concise and

precise definition of the functionality of the FunnelWeb literate
programming preprocessor. You should refer to this manual
when you have specific technical questions about FunnelWeb.
The SEARCH facility in the margin provides a quick way to
find what you need quickly. If you are not already familiar with
FunnelWeb, you may wish to refer to the FunnelWeb Tutorial
Manual which provides a structured introduction to
FunnelWeb, along with lots of examples and
application-specific information. If you want to compile
FunnelWeb, refer to the FunnelWeb Developer Manual

1 Introduction
1.1 Notation
1.2 Terminology
1.3 An Architectural Overview
1.4 Diagnostics
1.5 Typesetter Independence

2 Command Line Interface
2.1 Invoking FunnelWeb
2.2 Command Line Arguments
2.3 Options
2.4 File Name Inheritance
2.5 FunnelWeb Startup

3 Scanner
3.1 Basic Input File Processing
3.2 Special Sequences
3.3 Setting the Special Character
3.4 Inserting the Special Character into the Text
3.5 Inserting Arbitrary Characters into the Text
3.6 Comments
3.7 Quick Names
3.8 Inserting End of Line Markers

FunnelWeb Reference Manual

http://www.ross.net/funnelweb/reference/index.html (1 of 3) [3/3/2000 10:42:23 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

3.9 Suppressing End of Line Markers
3.10 Include Files
3.11 Pragmas
3.12 Pragma: Indentation
3.13 Pragma: Maximum Input Line Length
3.14 Pragma: Maximum Output File Line Length
3.15 Pragma: Typesetter
3.16 Freestanding Typesetter Directives
3.17 New Page Directives
3.18 Table of Contents
3.19 Vertical Skip
3.20 Title
3.21 Scanner/Parser Interface

4 Parser
4.1 Introduction
4.2 High Level Structure
4.3 Free Text
4.4 Typesetter Directives
4.5 Section Directive
4.6 Literal Directive
4.7 Emphasis Directive
4.8 Macros
4.9 Macro Names
4.10 Formal Parameter Lists
4.11 Expressions
4.12 Macro Calls
4.13 Macro Formal Parameters
4.14 Macros Are Static

5 Analyser

6 Tangle

7 Weave

8 FunnelWeb Shell
8.1 Introduction
8.2 Return Statuses
8.3 Command Line Length

FunnelWeb Reference Manual

http://www.ross.net/funnelweb/reference/index.html (2 of 3) [3/3/2000 10:42:23 PM]

8.4 String Substitution
8.5 How a Command Line is Processed
8.6 Options

9 Shell Commands
9.1 Introduction
9.2 Absent
9.3 Codify
9.4 Compare
9.5 Define
9.6 Diff
9.7 Diffsummary
9.8 Diffzero
9.9 Eneo
9.10 Execute
9.11 Exists
9.12 Fixeols
9.13 Fw
9.14 Help
9.15 Here
9.16 Quit
9.17 Set
9.18 Show
9.19 Skipto
9.20 Status
9.21 Tolerate
9.22 Trace
9.23 Write
9.24 Writeu

10 Glossary

11 References

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

FunnelWeb Reference Manual

http://www.ross.net/funnelweb/reference/index.html (3 of 3) [3/3/2000 10:42:23 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

1 Introduction
1.1 Notation
1.2 Terminology
1.3 An Architectural Overview
1.4 Diagnostics
1.5 Typesetter Independence

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

1 Introduction

http://www.ross.net/funnelweb/reference/intro.html [3/3/2000 10:42:42 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

1.1 Notation
A particular variant of EBNF (Extended Bachus Naur Form)
will be used to describe the FunnelWeb syntax. In this variant,
literal strings are delimited by double quotes (e.g. "string"),
optional constructs by square brackets (e.g. [optional]), and
constructs repeated zero or more times by braces (e.g.
{zeroormore}). Constructs to be repeated a fixed number of
times are enclosed in braces followed by a decimal number
indicating the number of times to be repeated (e.g.
{sixtimes}6). Constructs to be repeated one or more times are
enclosed in braces and followed by a + (e.g. {oneormore}+).
The traditional BNF "::=" is replaced by the visually simpler
"=". The traditional BNF angle brackets are abandoned.

Although FunnelWeb allows the special character to be
changed using the construct "<special>=", use of "<special>" to
refer to FunnelWeb's special character is cumbersome and
abstract. To simplify the presentation, the default special
character "@" is used throughout this chapter to represent the
special character.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

1.1 Notation

http://www.ross.net/funnelweb/reference/intro_notation.html [3/3/2000 10:49:06 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

1.2 Terminology
A specific terminology has arisen for dealing with FunnelWeb.
Some particularly useful examples are:

Journal file: An output file containing a copy of
the output sent to the user's console during an
invocation of FunnelWeb. In other systems, this
file is sometimes called a "log file".

Product file: An output file, generated by the
Tangle component of FunnelWeb, that contains the
expansion of the macros in the input file. (Other
names considered for this were: generated file,
expanded file, result file, program file, and tangle
file.)

A complete list of all the special FunnelWeb terminology
appears in the glossary. Be sure to refer to it if any of the terms
used are unclear.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

1.2 Terminology

http://www.ross.net/funnelweb/reference/intro_terminology.html [3/3/2000 10:49:22 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

1.3 An Architectural Overview
An understanding of the internals of FunnelWeb assists with
understanding its operation. During a single run, FunnelWeb reads
and processes a single input file called the input file (also called
the FunnelWeb file). The file is processed by passing it through a
series of stages called phases. The result is that some output files
are generated. A journal file is generated containing a copy of the
messages that appear on the console during the FunnelWeb run. A
listing file is created containing a summary of the run, including
any error messages. A documentation file is generated containing
typesetter commands that when fed into a typesetter program will
result in printed documentation. Finally, one or more product files
are generated containing the result of unscrambling the macro
definitions of the input file.

 .fw Input File
 (FunnelWeb file)
 V
 +---------+ \
 | Scanner | |
 +---------+ |
 V |
 +--------+ |
 | Parser | |
 +--------+ |
 V |
 +----------+ >----+--------+
 | Analyser | | | |
 +----------+ | | |
 V | | |
 +-------+-------+ | V V
 V V | | |
+--------+ +-------+ | | |
| Tangle | | Weave | | | |
+--------+ +-------+ / | |
 | | | |
 V V V V
 Product Documentation Listing Journal
 Files File File File

FunnelWeb's processing phases

1.3 An Architectural Overview

http://www.ross.net/funnelweb/reference/intro_arch.html (1 of 2) [3/3/2000 10:49:26 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

These files need not all be generated on any particular FunnelWeb
run. Whether each output file appears, is controlled by command
line options.

FunnelWeb processes each input file in a sequence of phases. If an
error occurs during a phase, no subsequent phases are executed.

The phases are briefly described below.

The Scanner reads the input file, expands and reads
in include files, scans the input stream, processes
pragmas and typesetter directives, and parses all the
FunnelWeb special sequences. The result is a list of
tokens that is handed to the parser.

The Parser reads the scanner's token list and parses
it, constructing a document list and a macro table.
which are passed to later phases.

The Analyser examines the macro table generated by
the parser and performs a number of checks of the
macro structures that the parser could not make on its
single pass. For example, the analyser detects and
flags unused macros and recursive macros. The
analyser forms the final stage of FunnelWeb's
front-end processing.

Tangle expands certain macros in the macro table to
generate one or more product files.

Weave uses the document list to generate a
documentation file.

A single run through these phases constitutes a single invocation of
FunnelWeb proper. Most invocations of the FunnelWeb
program will consist only of a single execution of FunnelWeb
proper. However, FunnelWeb also provides a command shell that
provides many useful commands, including a command to invoke
FunnelWeb proper. Discussion of the command shell is deferred
until later.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

1.3 An Architectural Overview

http://www.ross.net/funnelweb/reference/intro_arch.html (2 of 2) [3/3/2000 10:49:26 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

1.4 Diagnostics
During execution, FunnelWeb proceeds cautiously with each of
its phases, only proceeding with the next phase if the previous
phase has been successful. This means that, when debugging a
FunnelWeb file, you may find that the number of errors
increases after you fix some of them, as you will be exposing
yourself to the next FunnelWeb phase.

FunnelWeb employs five levels of diagnostics at different
levels of severity. Severity is defined in terms of the level of
activity at which the diagnostic causes FunnelWeb to abort.

Warning: A warning does not cause FunnelWeb
to terminate or curtail its operation in any way, but
serves merely to warn the user of particular
conditions that might be symptomatic of deeper
problems.

Error: An error causes FunnelWeb to terminate
processing of the current input file at the end of the
current phase. For example, if an error occurs
during scanning, FunnelWeb will continue
scanning (and possibly generate further scanning
diagnostics), but will not invoke the parser.

Severe Error: A severe error (or "severe" for
short) is the same as an error except that
FunnelWeb terminates the current phase
immediately.

Fatal Error: A fatal error causes FunnelWeb not
only to terminate the current phase and run
immediately, but also to terminate total
FunnelWeb processing immediately. A severe
error will not cause a FunnelWeb script to
terminate, but a fatal error will. A fatal error
causes FunnelWeb to return control to the
operating system.

Assertion Error: An assertion error occurs if
FunnelWeb detects an internal inconsistency, in
which case FunnelWeb terminates immediately
and ungracefully. Such an error can occur only if
there are bugs in FunnelWeb. With luck, such
errors will be extremely rare.

1.4 Diagnostics

http://www.ross.net/funnelweb/reference/intro_diagnostics.html (1 of 2) [3/3/2000 10:49:33 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

FunnelWeb indicates the level of severity of each diagnostic
that it issues by starting each diagnostic either with the full
name of the severity level or with just the first letter of the
severity level followed by a colon.

FunnelWeb conveys the presence or absence of diagnostics at
the operating system level by returning EXIT_SUCCESS status
if no diagnostics occurred during the run and EXIT_FAILURE
status if one or more diagnostics (including warnings) occurred
during the run. (From the symbols of the ANSI standard C
library stdlib.h. See [Kernighan88], p.252.)

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

1.4 Diagnostics

http://www.ross.net/funnelweb/reference/intro_diagnostics.html (2 of 2) [3/3/2000 10:49:33 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

1.5 Typesetter Independence
One of the design goals of FunnelWeb was to provide a
target-language independent literate programming system.
This goal has been achieved simply by treating the text written
to the product file as homogeneous and typesetting it in tt font.
A secondary goal was to provide a typesetter independent
literate programming system. By this is meant that it be
possible to create FunnelWeb input files that do not contain
typesetter-specific commands. To a lesser extent this goal has
also been achieved.

The difficulty with providing typesetter-independent typesetting
is that each desired typesetting feature must be recreated in a
typesetter-independent FunnelWeb typesetting construct that
FunnelWeb can translate into whatever typesetting language is
being targeted by Weave. Taken to the extreme, this would
result in FunnelWeb providing the full syntactic and semantic
power of TeX, but with a more generic, FunnelWeb-specific
syntax. This was unfeasible in the time available, and
undesirable as well.

The compromise struck in the FunnelWeb design is to provide a
set of primitive typesetter-independent typesetting features that
are implemented by FunnelWeb. These are the typesetter
directives. If the user is prepared to restrict to these directives,
then the user's FunnelWeb document will be both
target-language and typesetter independent. However, if the
user wishes to use the more sophisticated features of the target
typesetting system, the user can specify the typesetter in a
"typesetter" pragma and then place typesetter commands
in the free text of the FunnelWeb document where they will be
passed verbatim to the documentation file. The choice of the
trade-off between typesetter independence and typesetting
power is left to the user.

This said, experience with FunnelWeb, over more than a
decade, indicates that the typesetting facilities provided by
FunnelWeb are sufficient for most documentation.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights

1.5 Typesetter Independence

http://www.ross.net/funnelweb/reference/intro_typesetter.html (1 of 2) [3/3/2000 10:49:37 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

2 Command Line Interface
2.1 Invoking FunnelWeb
2.2 Command Line Arguments
2.3 Options
2.4 File Name Inheritance
2.5 FunnelWeb Startup

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

2 Command Line Interface

http://www.ross.net/funnelweb/reference/interface.html [3/3/2000 10:42:49 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

2.1 Invoking FunnelWeb
When a user invokes FunnelWeb at the operating system
command level, the user must provide a command line
instructing FunnelWeb what to do. Typically an operating
system command line consists of a verb indicating that a
particular program should be run, followed by a list of options.
For example:

rename file1 file2

In this case, the verb is rename and the command line options
are file1 file2.

Operating systems differ greatly in the depth with which they
process their command lines, ranging from systems that simply
pass the entire command line string to the invoked program
(e.g. MSDOS) through to systems that perform complete
command line parsing (e.g. OpenVMS). Syntax conventions
vary considerably.

So as to achieve maximum portability and consistency of
invocation across different platforms, FunnelWeb reads its
command line as a raw string and performs all its own parsing.
This is portable because, at the very least, all operating systems
allow invoked programs access to the raw command line.

The command verb used to invoke FunnelWeb should be "fw".

FunnelWeb_verb = "fw"

If this verb is not available, some alternatives are "funweb",
"fun", and "funnelweb". The verbs web or fweb should be
avoided as they are the names of other literate programming
tools.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

2.1 Invoking FunnelWeb

http://www.ross.net/funnelweb/reference/interface_invoking.html [3/3/2000 10:48:38 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

2.2 Command Line Arguments
Following the verb is the body of the command line which FunnelWeb parses
into zero or more arguments separated by runs of one or more blanks.

FunnelWeb_command_line =
 FunnelWeb_verb { {" "}+ argument }

Because some operating systems convert their command line to upper case
before handing it to the invoked program, FunnelWeb has been constructed so
as to be insensitive to the case of its command line arguments. However, when
dealing internally with arguments, FunnelWeb preserves the case of its
command line arguments so that it will be able to operate with operating
systems (such as Unix) whose file names are case dependent.

A valid FunnelWeb argument consists of a sign, an identifying letter, and an
optional string with no spaces separating them.

argument = sign id_letter [non_blank_string]
sign = "+" | "-" | "="
id_letter = "B" | "C" | "D" | "F" | "H" | "I" |
 "J" | "K" | "L" | "O" | "Q" | "S" |
 "T" | "W" | "X"

In addition there is a special form of argument that does not begin with a sign.

argument = non_blank_string_not_starting_with_+_=_or_-

This form is exactly equivalent to the same string with "+F" prepended to it.

The semantic effect of these arguments is defined in terms of options which are
the internal parameters of FunnelWeb and which correspond closely with the set
of legal command line arguments. FunnelWeb has a predefined set of options
each identified by an identifying letter having two attributes: a string , and a
boolean . The boolean determines whether an option is turned on or off . The
string contains additional information depending on the option.

When FunnelWeb starts up, its options have predefined default values.
FunnelWeb then parses its command line sequentially from left to right
executing the effect of each argument on the argument's corresponding option.
The sign and the string components of the argument are processed
independently . A sign of + turns the option on. A sign of - turns the option off.
A sign of = leaves the option's boolean attribute unchanged. The argument string
replaces the string of the corresponding option, unless the argument string is

2.2 Command Line Arguments

http://www.ross.net/funnelweb/reference/interface_arguments.html (1 of 2) [3/3/2000 10:48:51 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

empty, in which case the option string is not changed.

Because FunnelWeb processes its command line arguments from left to right, a
later argument can cancel the effect of an earlier one. For example fw +t -t will
result in the t option ending up off . This allows users to set up their own default
arguments by defining a symbol in their operating system's command language.
For example, a Unix user who wants FunnelWeb to delete all identical output
files and create a documentation file on each run with a default .typ extension
could simply place the following definition in their ".login" file.

alias fw fw +d +t.typ

These default options can then later be easily overridden on the command line.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

2.2 Command Line Arguments

http://www.ross.net/funnelweb/reference/interface_arguments.html (2 of 2) [3/3/2000 10:48:51 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

2.3 Options
FunnelWeb's options are internal parameters which can be
modified by corresponding arguments on FunnelWeb's
command line. A description of each argument and option
follows.

B1...B6: Tracedumps: These six options have
been provided to assist in the debugging and
testing of FunnelWeb. They determine which of
six possible trace dumps are to be written to the
listing file. Only the boolean attributes of these
options are ever used. The six dumps are identified
by the digits 1..6 as follows:

Dump a hexdump of each mapped input and include file.1.

Dump the global line list created by the scanner.2.

Dump the token list created by the scanner.3.

Dump the macro table created by the parser.4.

Dump the document list created by the parser.5.

Dump a table summarizing CPU and real time usage.6.

Because these options are so closely related, a hack has been
pulled to enable them to all to be controlled by the B argument.
The string argument to the B argument determines which of the
six options are to be affected by the sign. Examples: +B134
turns on options B1, B3, and B4. -B1 turns off option B1.
Default: -B123456.

B7: Determinism: If the B7 option is turned on,
FunnelWeb suppresses the output of anything
non-deterministic, or machine dependent. This
assists in regression testing. Only the boolean
attribute is used in this option. This option is
controlled by the B7 argument which falls under
the same argument syntax as the other B options.
Examples: +B7, -B7. Default: -B7.

C: Listing File Context: The C option is always
turned on and cannot be turned off. Its only
attribute is a number which determines the number
of lines of context that the lister will place around
lines flagged with diagnostics in the listing file (if
a listing file is written). A value of 100 indicates
infinite context which means that the entire listing

2.3 Options

http://www.ross.net/funnelweb/reference/interface_options.html (1 of 5) [3/3/2000 10:48:55 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

file will be written out if a single diagnostic
occurs. The value of this number can be specified
by specifying it as a string of decimal digits to the
+C argument. Examples: +C100, +C10.
Default: +C2.

D: Delete Identical Output Files: Only the
boolean attribute of this option is used. When
turned on, the option causes the suppression
(deletion) of product files and documentation files
(but not listing or journal files) that are identical to
the currently existing files of the same name. For
example, if FunnelWeb is instructed to generate
stack.h as an product file, and the text to be written
to stack.h is identical to the currently existing
stack.h, then FunnelWeb will simply not write any
product file, leaving the currently existing stack.h
as it is (and in particular leaving the file's date
attribute the same). This prevents unnecessary
make propagations. For example, in a C program,
if stack.fw is a FunnelWeb input file that generates
stack.h and stack.c, a modification to stack.fw that
affects stack.c but does not affect stack.h will not
provoke the recompilation of modules that
#include stack.h, so long as the intervening
FunnelWeb run has +D set. Examples: -D, +D.
Default: -D.

F: FunnelWeb Input File: If this option is turned
on, FunnelWeb processes the input file whose
name is specified by the option string. Examples:
+Fsloth.fw, +Fwalrus, -F. Default: -F.

H: Display Help Message: If this option is turned
on, FunnelWeb displays the message specified by
the argument string. Each message has a name.
The main help message is called "menu" and
contains a list of the other help messages.
Examples: +Hregistration, +Hoptions.
Default: -Hmenu.

I: Include default file specification: This option
is always turned on and cannot be turned off. Its
string attribute is used as the default file
specification for include files. Usually this option
is used to specify a directory from which include
files should be obtained. Examples:
=I/usr/dave/includes/. Default: +I.

2.3 Options

http://www.ross.net/funnelweb/reference/interface_options.html (2 of 5) [3/3/2000 10:48:55 PM]

J: Journal File: If this option is turned on,
FunnelWeb generates a journal file. A journal file
contains a log of all the console input and output to
FunnelWeb during a single invocation of the
FunnelWeb program (Note: The Q option does not
affect this.). The journal file is particularly useful
for examining what happened during a FunnelWeb
shell run. The string attribute is the name of the
journal file. Examples: +Jjournfile, -J. Default: -J.

K: Keyboard: If this option is turned on,
FunnelWeb enters an interactive mode in which
the user can enter FunnelWeb shell commands
interactively. The string attribute is unused.
Examples: +K, -K. Default: -K.

L: Listing File: If this option is turned on,
FunnelWeb generates a listing file containing a
summary of a run on FunnelWeb proper. The
string argument is the name of the listing file to be
created. Examples: +L, -L, +Llisting.lis.
Default: -L.

O: Product Files: If this option is turned on,
FunnelWeb generates a product file for each macro
in the input file that is bound to an output file. The
string attribute contributes to the name of the
product files. This option is controlled by the O
argument because product files used to be called
"Output files"). Examples: -O,
+O/usr/dave/product/. Default: +O.

Q: Quiet: If this option is turned on, FunnelWeb
suppresses all output to the screen (standard
output) unless one or more errors occur, in which
case a single line summarizing the errors is sent to
standard output at the end of the run. If this option
is turned off, FunnelWeb writes to the console in
its normal garrulous way. The string attribute is
unused in this option. Examples: -Q, +Q.
Default: -Q.

S: Screen: If this option is turned on, FunnelWeb
writes all diagnostics to the screen (standard
output) as well as to the listing file. By default,
they are sent only to the listing file. This option
has a single numerical attribute that can be
specified as a decimal string in the string
component of the S argument. The number is the

2.3 Options

http://www.ross.net/funnelweb/reference/interface_options.html (3 of 5) [3/3/2000 10:48:55 PM]

number of lines of context that should surround
each diagnostic sent to the screen. Examples: -S,
+S6, +S0. Default: -S.

T: TeX Documentation file: If this option is
turned on, FunnelWeb generates a documentation
file in TeX format. The string argument
contributes to the name of the documentation file
to be created. By default this option is turned off,
as experience has shown that most FunnelWeb
runs are made during program development;
documentation runs occur far more rarely. This
option is controlled by the T command line
argument because documentation files used to be
called typesetter files. Examples: -T, +Tsloth.tex.
Default: -T.

U: HTML Documentation file: If this option is
turned on, FunnelWeb generates a documentation
file in HTML format. The string argument
contributes to the name of the documentation file
to be created. By default this option is turned off,
as experience has shown that most FunnelWeb
runs are made during program development;
documentation runs occur far more rarely. U was
chosen for this feature because it follows T, and H
and W were already allocated to other functions.
Examples: -U, +Usloth.html. Default: -U.

W: Width of Product Files: If this option is
turned on, a limit is placed on the length of lines in
product files generated during the run. Lines that
breach the limit are flagged with error messages.
This option has a single numerical attribute that
can be specified as a decimal string in the string
component of the W argument. The number is the
specified maximum width. This option is one of
two limits that are placed on the width of product
files. The other limit is an attribute of the input file
that defaults to 80 characters, but can be raised or
lowered using an output line length pragma. The
width that is enforced is the lower of this value and
the value of the W option (if turned on). Examples:
-W, +W100. Default: -W80.

X: Execute: If this option is turned on,
FunnelWeb executes the FunnelWeb shell script
file specified by the string attribute. Examples:
+Xmaster, -X. Default: -X.

2.3 Options

http://www.ross.net/funnelweb/reference/interface_options.html (4 of 5) [3/3/2000 10:48:55 PM]

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

2.4 File Name Inheritance
During a single run of FunnelWeb, FunnelWeb can produce many
different output files. As it would be very tedious to have to specify the
name of each of these files explicitly each time FunnelWeb is run,
FunnelWeb provides a system of defaults that allows the user to
specify the minimum required to successfully complete the run. To do
this, FunnelWeb allows file specifications to inherit fields from one
another.

FunnelWeb structures filenames into three fields which are inherited
independently. The fields are: directory, name, and extension. On
systems having other fields (e.g. network node , device name), the
extra fields are considered to be part of the directory field. Version
numbers are ignored. A field can inherit a value if its current value is
the empty string.

The following table gives the full inheritance scheme used in
FunnelWeb.

Script Input Include Journal List TeX HTML Prod
 @i @o
+x +f +i +j +l +t +u +o
".fws" ".fw" ".fwi" ".jrn" ".lis" ".tex" ".html"
 +f +f +f +f +f
DefDir Defdir Defdir Defdir Defdir Defdir Defdir Defdir

The table is arranged with items of highest priority at the top. The "+"
cells refer to the file specification supplied in the given command line
argument. "+F" is the name of the input file. "Defdir" refers to the
default directory specification provided by the operating system.
Empty cells do not contribute.

The following example shows how the table is used. Suppose that the
user invoked FunnelWeb as follows:

fw /usr/ross/work/sloth.fw +twalrus

To work out what the documentation file should be called, FunnelWeb
starts with the empty string and then works down the Document
column of the table. The top entry is empty so we ignore it and proceed
to the second entry which consists of "+T". The user specified the
string "walrus" as the value of this option, and as our current

2.4 File Name Inheritance

http://www.ross.net/funnelweb/reference/interface_inheritance.html (1 of 2) [3/3/2000 10:48:58 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

(empty) string does not have a name field, we insert the string
"walrus" into the name field, resulting in the string "walrus".
Moving down to the next row, we encounter the constant string
".tex". This string consists of an empty directory and name field, but
a ".tex" file extension. As our current string "walrus", does not
already have a file extension (i.e. the file extension field of our current
string is empty), we add in ".tex", resulting in the string
"walrus.tex". Next we encounter the "+F" field which is the input
filename "/usr/ross/work/sloth.fw" consisting of a directory
field "/usr/ross/work/", a name field "sloth", and a file
extension field ".fw". Our "walrus.tex" string already has name
and file extension fields, but its directory field is empty, and so we add
in the directory field from the input file specification, resulting in the
string "/usr/ross/work/walrus.tex". Finally, we hit the
default directory specification, which is (say) "/usr/ross/play/".
However, as the directory field of our walrus string is already full, it
has no effect.

In general, there is no need to remember the exact details of
FunnelWeb's filename inheritance. The important thing is to know that
it exists, and to use it.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

2.4 File Name Inheritance

http://www.ross.net/funnelweb/reference/interface_inheritance.html (2 of 2) [3/3/2000 10:48:58 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

2.5 FunnelWeb Startup
FunnelWeb's command line options can be divided into two
groups. Action options instruct FunnelWeb to performs some
sort of independent action such as processing a file. Ordinary
options merely modify the way in which FunnelWeb executes
the actions.

The four action options are: +F, +K, +X, and +H.

When FunnelWeb is invoked, if no action options are specified,
and there is a file called fwinit.fws in the current directory, then
FunnelWeb executes the FunnelWeb script file (.fws) and
terminates. If there isn't such a file, FunnelWeb issues a help
message and terminates.

If, when FunnelWeb is invoked, one or more action options are
specified, FunnelWeb performs the actions in a predefined
order as follows:

Initialization script: FunnelWeb starts by looking
in the current directory for a file called
"fwinit.fws". If it doesn't find one, it doesn't
raise any error. If it does find one, it executes it as
a FunnelWeb shellscript. Initialization scripts are
useful for setting up FunnelWeb options (e.g.
using the "set" command without having to type
them each time).

Execute argument script: If a shellscript has been
specified using the "+X" option, FunnelWeb
executes it.

Process input file: If the user has specified an
input file using the "+F" option, then this is
processed next (by FunnelWeb proper).

Display help message: If the user requested, using
the "+H" option, that a help message be displayed,
the message is displayed at this time.

Interactive mode: If the user specified the "+K"
option, FunnelWeb enters interactive (keyboard)
mode.

FunnelWeb processes these actions in the above order
regardless of the order in which they appear on the command
line.

2.5 FunnelWeb Startup

http://www.ross.net/funnelweb/reference/interface_startup.html (1 of 2) [3/3/2000 10:49:02 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

It may be hard to see how some of these actions might be
combined. Nevertheless, FunnelWeb allows this. For example,
a user might wish to process a batch of files as specified in a
script ("+Xscript.fws"), be reminded of the interactive
commands available ("+Hcommand"), and then enter
interactive mode so as to be able to reprocess files for which
FunnelWeb reported errors (after correcting the errors in a
different workstation window).

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

2.5 FunnelWeb Startup

http://www.ross.net/funnelweb/reference/interface_startup.html (2 of 2) [3/3/2000 10:49:02 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3 Scanner
The scanner reads in the input file and produces a list of tokens
which it hands onto the parser. In addition, some input
constructs may cause the scanner to modify some of
FunnelWeb's options.

3.1 Basic Input File Processing
3.2 Special Sequences
3.3 Setting the Special Character
3.4 Inserting the Special Character into the Text
3.5 Inserting Arbitrary Characters into the Text
3.6 Comments
3.7 Quick Names
3.8 Inserting End of Line Markers
3.9 Suppressing End of Line Markers
3.10 Include Files
3.11 Pragmas
3.12 Pragma: Indentation
3.13 Pragma: Maximum Input Line Length
3.14 Pragma: Maximum Output File Line Length
3.15 Pragma: Typesetter
3.16 Freestanding Typesetter Directives
3.17 New Page Directives
3.18 Table of Contents
3.19 Vertical Skip
3.20 Title
3.21 Scanner/Parser Interface

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3 Scanner

http://www.ross.net/funnelweb/reference/scanner.html [3/3/2000 10:42:54 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.1 Basic Input File Processing
In order to read in an input file or include file, the scanner calls
a submodule called the mapper that reads a file in and creates a
contiguous copy of it in memory. The scanner then performs
three checks on the file, the first (file termination) of which is
performed before scanning commences, and the other two of
which take place during scanning before each line is scanned.

File Termination: The first check the scanner
makes is whether the file is terminated properly. A
file is considered to be properly terminated if it
either contains no lines, or if the last line in the file
is terminated by an end-of-line marker. If the
scanner detects that an input file is not properly
terminated, it adds an end-of-line marker itself (to
the copy in memory only).

Unprintable Characters: The second check the
scanner makes is for unprintable characters (ASCII
0--31 and 127--255 (except for EOL(10))) which it
flags as errors and replaces by question marks.

Line Lengths: The third check the scanner makes
is input line length. When FunnelWeb starts up, a
default maximum input line length of 80 is set.
This can be changed dynamically during scanning
using a @p maximum_input_line_length pragma.
If the number of characters on a line (not including
the end of line marker) exceeds this limit,
FunnelWeb generates an error.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.1 Basic Input File Processing

http://www.ross.net/funnelweb/reference/scanner_basic.html [3/3/2000 10:47:07 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.2 Special Sequences
The scanner scans the input file from top to bottom, left to right, treating the
input as ordinary text (to be handed directly to the parser as a text token) unless
it encounters the special character which introduces a special sequence. Thus,
the scanner partitions the input file into ordinary text and special sequences.
(Note: This sort of character is often referred to as the "escape character" or the
"control character" in other systems. However, as there is great potential to
confuse these names with the "escape" character (ASCII 27) and ASCII
"control" characters, the term "special" has been chosen instead. This results in
the terms special character and special sequence .

input_file = { ordinary_text | special_sequence }

Upon startup, the special character is @, but it can be changed using the
<special>=<new_special> special sequence. Rather than using <special>
whenever the special character appears, this document uses the default special
character "@" to represent the current special character. More importantly,
FunnelWeb's error messages all use the default special character in examples,
even if the special character has been changed.

An occurrence of the special character in the input file introduces a special
sequence. The kind of special sequence is determined by the character following
the special character. Only printable characters can follow the special character.

The following list gives all the possible characters that can follow the special
character, and the legality of each sequence. The first column gives the ASCII
number of each ASCII character. The second column gives the special sequence
for that character. The next column contains one of three characters: "-" means
that the sequence is illegal. "S" indicates that the sequence is a simple sequence
(with no attributes or side effects) that appears exactly as shown and is
converted directly into a token and fed to the parser. Finally, "C" indicates that
the special sequence is complex, possibly having a following syntax or
producing funny side effects.

ASC SEQ COMMENT

000 \
016 | Unprintable chars (illegal specials).
031 /
032 @ - Illegal (space).
033 @! C Comment.
034 @" S Parameter delimeter.

3.2 Special Sequences

http://www.ross.net/funnelweb/reference/scanner_special.html (1 of 3) [3/3/2000 10:47:14 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

035 @# C Short name sequence.
036 @$ S Start of macro definition.
037 @% - Illegal.
038 @& - Illegal.
039 @' - Illegal.
040 @(S Open parameter list.
041 @) S Close parameter list.
042 @* - Illegal.
043 @+ C Insert newline.
044 @, S Parameter separator.
045 @- C Suppress end of line marker.
046 @. - Illegal.
047 @/ S Open or close emphasised text.
048 @0 - Illegal.
049 @1 S Formal parameter 1.
050 @2 S Formal parameter 2.
051 @3 S Formal parameter 3.
052 @4 S Formal parameter 4.
053 @5 S Formal parameter 5.
054 @6 S Formal parameter 6.
055 @7 S Formal parameter 7.
056 @8 S Formal parameter 8.
057 @9 S Formal parameter 9.
058 @: - Illegal.
059 @; - Illegal.
060 @< S Open macro name.
061 @= C Set special character.
062 @> S Close macro name.
063 @? - Illegal. Reserved for future use.
064 @@ C Insert special character into text.
065 @A S New section (level 1).
066 @B S New section (level 2).
067 @C S New section (level 3).
068 @D S New section (level 4).
069 @E S New section (level 5).
070 @F - Illegal.
071 @G - Illegal.
072 @H - Illegal.
073 @I C Include file.
074 @J - Illegal.
075 @K - Illegal.
076 @L S Macro is library macro.
077 @M S Macro may be called many times.
078 @N - Illegal.
079 @O S Macro is attached to product file.
080 @P C Pragma.

3.2 Special Sequences

http://www.ross.net/funnelweb/reference/scanner_special.html (2 of 3) [3/3/2000 10:47:14 PM]

081 @Q - Illegal.
082 @R - Illegal.
083 @S - Illegal.
084 @T C Typesetter directive.
085 @U - Illegal.
086 @V - Illegal.
087 @W - Illegal.
088 @X - Illegal.
089 @Y - Illegal.
090 @Z S Macro may be called zero times.
091 @[- Illegal. Reserved for future use.
092 @\ - Illegal.
093 @] - Illegal. Reserved for future use.
094 @^ C Insert control character into text
095 @_ - Illegal.
096 @` - Illegal.
097 @a \
109 @m | Identical to @A..@Z.
122 @z /
123 @{ S Open macro body/Open literal directive.
124 @| - Illegal.
125 @} S Close macro body/Close literal directive.
126 @~ - Illegal.
127 to 255 - Illegal specials (as non-standard ASCII).

The most important thing to remember about the scanner is that nothing happens
unless the special character is seen. There are no funny sequences that will
cause strange things to happen. The best way to view a FunnelWeb document at
the scanner level is as a body of text punctuated by special sequences that serve
to structure the text at a higher level.

The remaining description of the scanner consists of a detailed description of the
effect of each complex special sequence.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.2 Special Sequences

http://www.ross.net/funnelweb/reference/scanner_special.html (3 of 3) [3/3/2000 10:47:14 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.3 Setting the Special Character
The special character can be set using the sequence
<special>=<newspecialchar>. For example, @=# would change
the special character to a hash (#) character. The special
character may be set to any printable ASCII character except
the blank character (i.e. any character in the ASCII range
[33,126]). In normal use, it should not be necessary to change
the special character of FunnelWeb, and it is probably best to
avoid changing the special character so as not to confuse
FunnelWeb readers conditioned to the @ character. However,
the feature is very useful where the text being prepared contains
many @ characters (e.g. a list of internet electronic mail
addresses).

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.3 Setting the Special Character

http://www.ross.net/funnelweb/reference/scanner_special_set.html [3/3/2000 10:47:17 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.4 Inserting the Special Character
into the Text
The special sequence <special>@ inserts the special character
into the text as if it were not special at all. The @ of this
sequence has nothing to do with the current special character. If
the current special character is P then the sequence P@ will
insert a P into the text. Example: @@#@=#@#@#=@@@
translates to @#@#@.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.4 Inserting the Special Character into the Text

http://www.ross.net/funnelweb/reference/scanner_special_ins.html [3/3/2000 10:47:20 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.5 Inserting Arbitrary Characters into the
Text
While FunnelWeb does not tolerate unprintable characters in the input file
(except for the end of line character), it does allow the user to specify that
unprintable characters appear in the product file. The @^ sequence inserts a
single character of the user's choosing into the text. The character can be
specified by giving its ASCII number in one of four bases: binary, octal,
decimal, and hexadecimal. Here is the syntax:

control_sequence = "@^" char_spec
char_spec = binary | octal |
 decimal | hexadecimal
binary = ("b" | "B")
 "(" {binary_digit}8 ")"
octal = ("o" | "O" | "q" | "Q")
 "(" {octal_digit}3 ")"
decimal = ("d" | "D")
 "(" {decimal_digit}3 ")"
hexadecimal = ("h" | "H" | "x" | "X")
 "(" {hex_digit}2 ")"
binary_digit = "0" | "1"
octal_digit = binary_digit | "2" | "3" |
 "4" | "5" | "6" | "7"
decimal_digit = octal_digit | "8" | "9"
hex_digit = decimal_digit |
 "A" | "B" | "C" | "D" | "E" | "F" |
 "a" | "b" | "c" | "d" | "e" | "f"

Example:

@! Unix Make requires that productions
@! commence with tab characters.
@^D(009)prog.o <- prog.c

Note that the decimal "9" is expressed with leading zeros as "009". FunnelWeb
requires a fixed number of digits for each base. Eight digits for base two, three
digits for base ten, three digits for base eight and two digits for base sixteen.

FunnelWeb treats the character resulting from a @^ sequence as ordinary text in
every sense. If your input file contains many instances of a particular control
character, you can package it up in a macro like any other text. In particular,

3.5 Inserting Arbitrary Characters into the Text

http://www.ross.net/funnelweb/reference/scanner_arbitrary.html (1 of 2) [3/3/2000 10:47:24 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

quick names can be used to great effect:

@! Unix "Make" requires that productions
@! commence with tab characters.
@! So we define a macro with a quick name
@! as a tab character.
$@#T@{@^D(009)@}
@! And use it in our productions.
@#Tprog.o <- prog.c
@#Ta.out <- prog.o

Warning: If you insert a Unix newline character (decimal 10) into the text,
FunnelWeb will treat this as an end of line sequence regardless of what the
character sequence for end of line is on the machine upon which it is running.
Unix EOL is FunnelWeb's internal representation for end of line. Thus, in the
current version of FunnelWeb, inserting character 10 into the text is impossible
unless this also happens to be the character used by the operating system to mark
the end of line.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.5 Inserting Arbitrary Characters into the Text

http://www.ross.net/funnelweb/reference/scanner_arbitrary.html (2 of 2) [3/3/2000 10:47:24 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.6 Comments
When FunnelWeb encounters the @! sequence during its left-to-right scan of the
line, it throws away the rest of the line (including the EOL) without analysing it
further. Comments can appear in any line except "@i", "@t", and "@p" lines.

FunnelWeb comments can be used to insert comments into your input file that
will neither appear in the product files nor in the documentation file, but will be
solely for the benefit of those reading and editing the input file directly.
Example:

@! I have used a quick macro for this definition
@! as it will be used often.
@$@#C@{--@}

Because comments are defined to include the end-of-line marker, care must be
taken when they are being added or removed within the text of macro bodies.
For example the text fragment

for (i=0;i<MAXVAL;i++) @! Print out a[0..MAXVAL-1].
 printf("%u\n",a[i]);

will expand to

for (i=0;i<MAXVAL;i++) printf("%u\n",a[i]);

This problem really has no solution; if FunnelWeb comments were defined to
omit the end of line marker, the expanded text would contain trailing blanks! As
it is, FunnelWeb comments are designed to support single line comments which
can be inserted and removed as a line without causing trouble. For example:

@! Print out a[0..MAXVAL-1].
for (i=0;i<MAXVAL;i++)
 printf("%u\n",a[i]);

If you want a comment construct that does not enclose the end of line marker,
combine the insert end of line construct @+ with the comment construct @! as
in

for (i=0;i<MAXVAL;i++) @+@! Print out a[0..MAXVAL-1].
 printf("%u\n",a[i]);

FunnelWeb comments should really only be used to comment the FunnelWeb

3.6 Comments

http://www.ross.net/funnelweb/reference/scanner_comments.html (1 of 2) [3/3/2000 10:47:27 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

constructs being used in the input file. Comments on the target code are best
placed in comments in the target language or in the documenting text
surrounding the macro definitions. In the example above, a C comment would
have been more appropriate.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.6 Comments

http://www.ross.net/funnelweb/reference/scanner_comments.html (2 of 2) [3/3/2000 10:47:27 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.7 Quick Names
FunnelWeb provides a quick name syntax as an alternative, for
macros whose name consists of a single character, to the angle
bracket syntax usually used (e.g. @<Sloth@>). A quick name
sequence consists of @#x where x, the name of the macro, can
be any printable character except space.

quick_name = "@#" non_space_printable

The result is identical to the equivalent ordinary name syntax,
but is shorter. For example, @#X is equivalent to @<X@>.
This shorter way of writing one-character macro names is more
convenient where a macro must be used very often. For
example, the macro calls in the following fragment of an Ada
program are a little clumsy.

@! Define @<D@> as "" to turn on debug code
@! and "--" to turn it off.
@$@<D@>@{--@@)
@<D@>assert(b>3);
@<D@>if x>7 then write("error") end if

The calls can be shortened using the alternative syntax.

@! Define @#| as "" to turn on debug code
@! and "--" to turn it off.
@$@#|@{--@@)
@#|assert(b>3);
@#|if x>7 then write("error") end if

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.7 Quick Names

http://www.ross.net/funnelweb/reference/scanner_quicknames.html [3/3/2000 10:47:30 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.8 Inserting End of Line Markers
An end of line marker/character can be inserted into the text using the @+
sequence. This is exactly equivalent to a real end of line in the text at the point
where it occurs. While this feature may sound rather useless, it is very useful
for laying out the input file. For example, the following input data for a
database program

Animal = Kangaroo
Size = Medium
Speed = Fast

Animal = Sloth
Size = Medium
Speed = Slow

Animal = Walrus
Size = Big
Speed = Medium

can be converted into

Animal = Kangaroo @+Size = Medium @+Speed = Fast @+
Animal = Sloth @+Size = Medium @+Speed = Slow @+
Animal = Walrus @+Size = Big @+Speed = Medium @+

which is easier to read, and more easily allows comparisons between records.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.8 Inserting End of Line Markers

http://www.ross.net/funnelweb/reference/scanner_eol_ins.html [3/3/2000 10:47:39 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.9 Suppressing End of Line Markers
End of line markers can be suppressed by the @- sequence. A
single occurrence of a @- sequence serves to suppress only the
end of line marker following it and must appear exactly before
the end of line marker to be suppressed. No trailing spaces, @!
comments, or any other characters are permitted between a @-
sequence and the end of line that it is supposed to suppress. The
@- sequence is useful for constructing long output lines without
them having to appear in the input. It can also be used in the
same way as the @+ was used in the previous section to assist
in exposing the structure of output text without affecting the
output text itself. Finally, it is invaluable for suppressing the
EOL after the opening macro text @{ construct. For example:

@$@<Walrus@>@{@-
I am the walrus!@}

is equivalent to

@$@<Walrus@>@{I am the walrus!@}

The comment construct (@!) can also be used to suppress end
of lines. However, the @- construct should be preferred for this
purpose as it makes explicit the programmer's intent to suppress
the end of line.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.9 Suppressing End of Line Markers

http://www.ross.net/funnelweb/reference/scanner_eol_supp.html [3/3/2000 10:47:42 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.10 Include Files
FunnelWeb provides an include file facility with a maximum depth of 10.
When FunnelWeb sees a line of the form @i <filename>, it replaces the entire
line (including the EOL) with the contents of the specified include file.
FunnelWeb's include file facility is intended to operate at the line level. If the
last line of the include file is not terminated by an EOL, FunnelWeb issues a
warning and inserts one (in the copy in memory).

The @i construct is illegal if it appears anywhere except at the start of a line.
The construct must be followed by a single blank. The file name is defined to
be everything between the blank and the end of the line (no comments (@!)
please!). Example: If the input file is

"Uh Oh, It's the Fuzz. We're busted!" said Baby Bear.
@i mr_plod.txt
"Quick! Flush the stash down the dunny and split."
 said Father Bear.

and there is a file called mr_plod.txt containing

"'Ello, 'Ello, 'Ello! What's all this 'ere then?"
 Mr Plod exclaimed.

then the scanner translates the input file into

"Uh Oh, It's the Fuzz. We're busted!" said Baby Bear.
"'Ello, 'Ello, 'Ello! What's all this 'ere then?"
 Mr Plod exclaimed.
"Quick! Flush the stash down the dunny and split."
 said Father Bear.

As a point of terminology, FunnelWeb calls the original input file the input
file and calls include files and their included files include files.

The include file construct operates at a very low level. An include line can
appear anywhere in the input file regardless of the context of the surrounding
lines.

FunnelWeb sets the special character to the default (@) at the start of each
include file and restores it to its previous value at the end of the include file.
This allows macro libraries to be constructed and included that are independent
of the prevailing special character at the point of inclusion. The same goes for
the input line length limit which is reset to the default value at the start of each

3.10 Include Files

http://www.ross.net/funnelweb/reference/scanner_include.html (1 of 2) [3/3/2000 10:47:45 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

include file and restored to its previous value afterwards.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.10 Include Files

http://www.ross.net/funnelweb/reference/scanner_include.html (2 of 2) [3/3/2000 10:47:45 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.11 Pragmas
Most tools have to support some essential, but rather inelegant
features. In FunnelWeb these messy bits have all been stuffed
into the scanner's pragma (for pragma tic) construct.

A pragma consists of a single line of input (including the EOL)
commencing with @p. This must be followed by a single space,
and then the pragma verb. This must be followed by a sequence
of zero or more arguments separated by one or more spaces.
Four pragmas are available

pragma = pragma_ident | pragma_mill |
 pragma_moll | pragma_typesetter

The following syntax definitions assist in defining the pragmas.

s = {" "}+
ps = ("@p" | "@P") " "
number = { decimal_digit }+
numorinf = number | "infinity"

The arguments to pragmas are case-sensitive and must be
specified in lower case.

Pragmas are processed and consumed entirely by the scanner.
The parser never sees them and so they can play no part in the
parser level syntax. As a result, pragma lines can appear
anywhere in the entire input file regardless of the surrounding
context (e.g. even in the middle of a macro definition). The sole
effect of a pragma is to modify some internal parameter of
FunnelWeb.

The following sections describe the four FunnelWeb pragmas.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.11 Pragmas

http://www.ross.net/funnelweb/reference/scanner_prag.html [3/3/2000 10:47:48 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.12 Pragma: Indentation
When FunnelWeb expands a macro, it can do so in two ways.
First it can treat the text it is processing as a one-dimensional
stream of text, and merely insert the body of the macro in place
of the macro call. Second, it can treat the text of the macro as a
two dimensional object and indent each line of the macro body
by the amount that the macro call itself was indented. Consider
the following macros.

@$@<Loop Structure@>@{@-
i=1;
while (i<=N)
 @<Loop body@>
endwhile
@}

@$@<Loop body@>@{@-
a[i]:=0;
i:=i+1;@}

Under the regime of no indentation the loop structure macro
expands to:

i=1;
while (i<=N)
 a[i]:=0;
i:=i+1;
endwhile

Under the regime of blank indentation the loop structure
macro expands to:

i=1;
while (i<=N)
 a[i]:=0;
 i:=i+1;
endwhile

The indentation pragma determines which of these two regimes
will be used to expand the macros when constructing the
product files. The syntax of the pragma is:

3.12 Pragma: Indentation

http://www.ross.net/funnelweb/reference/scanner_prag_ind.html (1 of 2) [3/3/2000 10:47:50 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

pragma_ident = ps "indentation" s "=" s
 ("blank" | "none")

Its two forms look like this:

@p indentation = blank
@p indentation = none

In the current version of FunnelWeb, the indentation regime is
an attribute that is attached to an entire run of Tangle; it is not
possible to bind it to particular product files or to particular
macros. As a result, it doesn't matter where indentation pragmas
occur in the input file or how many there are so long as they are
all the same. By default FunnelWeb uses blank indentation.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.12 Pragma: Indentation

http://www.ross.net/funnelweb/reference/scanner_prag_ind.html (2 of 2) [3/3/2000 10:47:50 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.13 Pragma: Maximum Input Line
Length
FunnelWeb generates an error for each input line that exceeds a
certain maximum number of characters. At the start of the
processing of each input file and each include file, this maximum is
set to a default value of 80. However, the maximum can be changed
using a maximum input line length pragma.

pragma_mill = ps "maximum_input_line_length" s
 "=" s numorinf

The maximum input line length can be varied dynamically
throughout the input file. Each maximum input line length pragma's
scope covers the line following the pragma through to and including
the next maximum input line length pragma, but not covering any
intervening include files. At the start of an include file, FunnelWeb
resets the maximum input line length to the default value. It restores
it to its previous value at the end of the include file.

This pragma is useful for detecting text that has strayed off the right
side of the screen when editing. If you use FunnelWeb, and set the
maximum input line length to be the width of your editing window,
you will never be caught by, for example, off-screen opening
comment symbols. You can also be sure that your source text can be
printed raw, if necessary, without lines wrapping around.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.13 Pragma: Maximum Input Line Length

http://www.ross.net/funnelweb/reference/scanner_prag_maxin.html [3/3/2000 10:47:55 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.14 Pragma: Maximum Output File
Line Length
As well as keeping an eye on input line lengths, FunnelWeb also
keeps an eye on the line lengths of product files and flags all lines
longer than a certain limit with error messages. Unlike the
maximum input line length, which can vary dynamically
throughout the input file, the maximum product file line length
remains fixed throughout the generation of all the product files.
The maximum product file line length pragma allows this value to
be set. If there is more than one such pragma in an input file, the
pragmas must all specify the same value.

pragma_moll = ps "maximum_output_line_length"
 s "=" s numorinf

The default value is 80 characters.

This pragma is only one of two constraints on the length of the
lines of the product files. The +W command line option also
contributes. The actual value that FunnelWeb uses is the minimum
of the limits specified in the command line and pragmas.

FunnelWeb does not monitor the length of the lines of its other
output files (journal file, listing file, documentation file).

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.14 Pragma: Maximum Output File Line Length

http://www.ross.net/funnelweb/reference/scanner_prag_maxout.html [3/3/2000 10:47:58 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.15 Pragma: Typesetter
The typesetter pragma allows the user to specify whether the input file
is supposed to be typesetter-independent, or whether it contains
commands in a particular typesetter language. The pragma has the
following syntax.

pragma_typesetter = ps "typesetter" s "="
 s ("none" | "tex" | "html")

The three forms of the pragma look like this.

@p typesetter = none
@p typesetter = tex
@p typesetter = html

A source file can contain more than one typesetter pragma, but they
must all specify the same value. The default is none. The typesetter
setting affects two things:

Handling of free text: If the typesetter is not none,
Weave writes the free text directly to the documentation
file without changing it whatsoever. This means that if
(say) \centerline appears in the input file, it will copied
directly to the documentation file. If the typesetter is
none, Weave intercepts any characters or sequences that
might have a special meaning to the target typesetter and
replaces them with typesetter commands to typeset the
sequences so that they will appear as they do in the input.
For example, if the typesetter is none and the target
typesetter is TeX, then if $ (the TeX "mathematics
mode" character) appears in the input file, it will be be
written to the documentation file as \$.

Restrictions on the target typesetter: If you make your
FunnelWeb input file depedent on one particular
typesetter, it's important that no attempt be made to
generate documentation for a different target format.
FunnelWeb enforces this at the Weave stage.

The aim of all this is to ensure that any typesetter dependency is
correctly proclaimed. Because none is the default typesetter, a user
who creates a source file without a typesetter = x pragma will soon
find that the control sequences they are inserting into the source
document are appearing verbatim in the printed documentation! In

3.15 Pragma: Typesetter

http://www.ross.net/funnelweb/reference/scanner_prag_type.html (1 of 2) [3/3/2000 10:48:02 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

order to activate these sequences, they will be forced to add a
typesetter pragma, thus making the dependency explicit.

It may seem strange to place the typesetter setting facility within a
pragma (@p) when there is a separate typesetting construct (@t). This
has been done to sustain the rule of thumb that says that pragmas do
not participate in the parser-level syntax, but typesetter directives do.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.15 Pragma: Typesetter

http://www.ross.net/funnelweb/reference/scanner_prag_type.html (2 of 2) [3/3/2000 10:48:02 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.16 Freestanding Typesetter Directives
FunnelWeb provides two kinds of typesetter directive to assist the user to
produce documentation. These are inline and freestanding. Unlike
pragmas, each of these categories of directive participates in the parser-level
syntax and can appear only in certain contexts (see the parser section).
Inline directives are designed to be used within paragraphs to alter the look
of the enclosed text. Freestanding typesetter directives are designed to
appear on lines of their own and have a bigger typographical impact.

The syntax of freestanding typesetter directives is almost identical to that of
pragmas. All the same syntax rules apply (except that the actual keywords
are different). The following subsections describe the four typesetter
directives available.

ftd = ftd_newpage | ftd_toc | ftd_vskip | ftd_title
ts = "@t "

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.16 Freestanding Typesetter Directives

http://www.ross.net/funnelweb/reference/scanner_type.html [3/3/2000 10:48:07 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.17 New Page Directives
The new page pragma is a typesetting pragma with the
following syntax.

ftd_newpage = ts "new_page"

It only form looks like this.

@t new_page

Its sole effect is to cause a "skip to a new page" command to be
inserted into the documentation file. The new page command is
such that if the typesetter is already at the top of a page, it will
skip to the top of the next page.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.17 New Page Directives

http://www.ross.net/funnelweb/reference/scanner_type_newpage.html [3/3/2000 10:48:10 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.18 Table of Contents
The table of contents pragma is a typesetting pragma with the
following syntax.

ftd_toc = ts "table_of_contents"

It only form looks like this.

@t table_of_contents

Its sole effect is to instruct Weave to insert a table of contents at
this point in the printed documentation. This pragma does not
skip to a top of a new page first.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.18 Table of Contents

http://www.ross.net/funnelweb/reference/scanner_type_contents.html [3/3/2000 10:48:13 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.19 Vertical Skip
The vertical skip pragma is a typesetting pragma that instructs
Weave to insert a specified amount of vertical space into the
documentation. The pragma has the following syntax.

ftd_vskip = ts "vskip" s number s "mm"

For example:

@t vskip 26 mm

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.19 Vertical Skip

http://www.ross.net/funnelweb/reference/scanner_type_vskip.html [3/3/2000 10:48:16 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.20 Title
The title pragma is a typesetting pragma with the following syntax.

ftd_title = ts "title" s font s alignment text
font = "normalfont" | "titlefont" |
 "smalltitlefont"
alignment = "left" | "centre" | "right"
text = """" { printable_char } """"

It's effect is to instruct Weave to insert a single line into the printed
documentation containing the specified text set in the specified font and
aligned in the specified manner. The double quotes delimiting the text are
for show only; if you want to put a double quote in the string, you don't
need to double them.

Here is an example of the pragma.

@t title smalltitlefont centre "How to Flip a Bit"

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

3.20 Title

http://www.ross.net/funnelweb/reference/scanner_type_title.html [3/3/2000 10:48:19 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

3.21 Scanner/Parser Interface
If the scanner terminates without any errors, control is passed to
the parser. The parser parses the token list generated by the
scanner. The token list consists of text scraps, freestanding
typesetter directives, and special sequence tokens.

The user should bear in mind that the scanner finishes running
before the parser starts running. This means that the scanner
cannot be influenced in any way by higher order structures such
as the parser might parse. For example, it is impossible to write
a FunnelWeb macro to include a file, or to write a macro that
inserts a vskip pragma into the input text.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

3.21 Scanner/Parser Interface

http://www.ross.net/funnelweb/reference/scanner_parser.html [3/3/2000 10:48:29 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4 Parser
4.1 Introduction
4.2 High Level Structure
4.3 Free Text
4.4 Typesetter Directives
4.5 Section Directive
4.6 Literal Directive
4.7 Emphasis Directive
4.8 Macros
4.9 Macro Names
4.10 Formal Parameter Lists
4.11 Expressions
4.12 Macro Calls
4.13 Macro Formal Parameters
4.14 Macros Are Static

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

4 Parser

http://www.ross.net/funnelweb/reference/parser.html [3/3/2000 10:42:59 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.1 Introduction
By the time the parser starts, the scanner has completely
terminated. At this point, it is not possible for any more files to
be included, and special characters are no longer present to
confuse things. All that remains is a list of text tokens, special
tokens, and typesetter directive tokens. Text tokens consist
entirely of sequences of printable characters and end of line
markers. Special tokens represent the special sequences that the
scanner found in the input file. Typesetter directive tokens
represent the freestanding typesetter directives that the scanner
encountered. The parser consumes the token list and builds a
macro table that is later used to generate product files. It also
constructs a document list that is used to generate the
documentation file.

The syntax rules appearing in the following sections refer to the
token list.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

4.1 Introduction

http://www.ross.net/funnelweb/reference/parser_introduction.html [3/3/2000 10:46:22 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.2 High Level Structure
At the highest level, the FunnelWeb parser parses the input file
(token list) into a sequence of text scraps, macro definitions,
and typesetter directives.

input_file = { text | macro | directive }

All three of these kinds of components contribute to the
documentation file, but only macro definitions contribute to the
product files. If all the free text and directives were removed
from a FunnelWeb input file, the product files would not be
affected.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

4.2 High Level Structure

http://www.ross.net/funnelweb/reference/parser_structure.html [3/3/2000 10:46:25 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.3 Free Text
Free text is any text that is not part of a macro definition or a directive. A scrap of
free text consists of a sequence of items drawn from the following list: non-special
printable characters, insert-eol special sequences, insert special character special
sequences, insert arbitrary character special sequence.

free_text = ordinary_text
ordinary_text = { ordinary_char | eol | text_special }+
text_special = "@+" | "@@" | "@^" char_spec
ordinary_char = " ".."~" - special

An example of some rather messy free text is as follows:

This@@ is a very@+ messy
@^D(009)chunk of text indeed.
But FunnelWeb still views it as
a single chunk of text.

FunnelWeb never sees two text chunks next to each other in the input; they are
always merged into a single text token.

The free text in an input file does not affect the product files. However, by default,
it appears in the printed documentation exactly as it is given in the input file, except
that it is filled and justified into paragraphs.

Any printable character or particular sequence of characters may appear in the free
text of a document. FunnelWeb ensures that they will appear exactly as given in the
input file, even if they happen to be escape characters or commands in the target
typesetter. However, FunnelWeb also provides a special mode that allows this
censoring to be overridden.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

4.3 Free Text

http://www.ross.net/funnelweb/reference/parser_freetext.html [3/3/2000 10:46:29 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.4 Typesetter Directives
FunnelWeb provides a variety of typesetter directives to assist
the user to typeset the document in a typesetter-independent
way. These are divided into freestanding typesetter directives
(ftd) and inline typesetter directives (itd). The internal syntax
of the freestanding typesetter directives has already been
discussed in the scanner section. The following syntax rule
defines the context in which these constructs can appear.

directive = ftd | itd
itd = section | literal | emphasis

The remainder of this section describes the inline typesetter
directives.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

4.4 Typesetter Directives

http://www.ross.net/funnelweb/reference/parser_type.html [3/3/2000 10:46:32 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.5 Section Directive
The section directive provides a way for the user to structure the program
and documentation into a hierarchical tree structure, just as in most large
documents. A section construct consists of a case-insensitive identifying
letter, which determines the absolute level of the section in the document,
and an optional section name, which has exactly the same syntax as a
macro name.

section = "@" levelchar [name]
levelchar = "A" | "B" | "C" | "D" | "E" |
 "a" | "b" | "c" | "d" | "e"

The section construct is not quite "inline", as it must appear only at the
start of a line. However, unlike the "@i", "@p", and "@t" constructs, it
does not consume the remainder of the line (although it would be silly to
place anything on the same line anyway).

FunnelWeb provides five levels of sections, ranging from the highest level
of A (like a LaTeX chapter) to the lowest level of E (like a LaTeX
subsubsubsection). FunnelWeb input files need not contain any sections at
all, but if they do, the first section must be at level A, and following
sections must not skip hierarchical levels (e.g. an @E cannot follow an
@C). FunnelWeb generates an error if a level is skipped.

All section must have names associated with them, but for convenience,
the section name is optional if the section contains one or more macro
definitions (i.e. at least one macro definition appears between the section
construct in question and the next section construct in the input file.). In
this case, the section inherits the name of the first macro defined in the
section. This feature streamlines the input file, avoiding duplicate name
inconsistencies.

Any sequence of printable characters can be used in the section name,
even the target typesetter's escape sequence (e.g. in TeX, "\").

The following example demonstrates the section construct.

@A@<Life Simulation@>

This is the main simulation module for planet
earth, simulated down to the molecular level. This
is a REALLY big program. I mean really big. I
mean, if you thought the X-Windows source code was

4.5 Section Directive

http://www.ross.net/funnelweb/reference/parser_type_section.html (1 of 2) [3/3/2000 10:46:35 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

big, you're in for a shock...

@B We start by looking at the code for six legged
stick insects as they form a good example of a
typical object-oriented animal implementation.

@$@<Six Legged Stick Insects@>@{@-
slsi.creep; slsi.crawl; slsi.creep;@}

In the above example, the name for the level A section is provided
explicitly, while the name for the level B section will be inherited from the
macro name.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

4.5 Section Directive

http://www.ross.net/funnelweb/reference/parser_type_section.html (2 of 2) [3/3/2000 10:46:35 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.6 Literal Directive
Experience has shown that one of the most common typesetting
requirements is that of being able to typeset small program fragments in
the middle of the documenting free text. Typically there is a frequent
need to refer to program identifiers, and it assists the reader to have such
identifiers typeset in the same manner as the program text in the macro
definition.

To specify that some text be typeset in tt font, enclose the text in curly
brace special sequences as follows.

literal = "@{" ordinary_text "@}"

As in macro names, section names, and macro bodies, the text contained
within the literal construct is protected by FunnelWeb from any
non-literal interpretation by the typesetter and the user is free to enclose
any text covered by the definition ordinary_text. FunnelWeb guarantees
that, no matter what the text is, it will be typeset in tt font exactly as it
appears. However, the text will be filled and justified into a paragraph as
usual.

Here is an example of the use of the construct:

@C The @{WOMBAT@} (Waste Of Money, Brains, And
Time) function calls the @{kangaroo@} input
function which has been known to cause keybounce.
This keybounce can be dampened using the
@{wet_sloth@} subsystem.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

4.6 Literal Directive

http://www.ross.net/funnelweb/reference/parser_type_literal.html [3/3/2000 10:46:38 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.7 Emphasis Directive
The emphasis directive is very similar to the literal directive except that
it causes its argument to be typeset in an emphasised manner (e.g.
italics). Like the literal directive, the emphasis directive protects its text
argument.

emphasise = "@/" ordinary_text "@/"

Example:

@C What you @/really@/ need, of course, is a
@/great@/, @/big@/, network with packets just
flying @/everywhere@/. This section implements an
interface to such a @/humungeous@/ network.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

4.7 Emphasis Directive

http://www.ross.net/funnelweb/reference/parser_type_emphasis.html [3/3/2000 10:46:41 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.8 Macros
The third category of construct appearing at the highest syntactic level in a
FunnelWeb input file is the macro definition. A macro definition binds a
unique macro name to a macro body containing an expression
consisting of text, calls to other macros, and formal parameters. The
syntax for a macro definition is as follows:

macro = ("@O" | "@$") name [formal_parameter_list]
 ["@Z"] ["@M"] { "@L" } ["==" | "+="]
 "@{" expression "@}"

The complexity of the macro definition syntax is mostly to enable the user
to attach various attributes to the macro. If the user chooses @O, then the
macro cannot be called, but is instead attached to a product file. If the user
chooses @$, then the macro is an ordinary macro definition that is not
attached to a file. Here are some example macro definitions.

@O@<example.txt@>@{This is an @<ugly duckling@>.@}

@$@<ugly duckling@>@M@{swan@}

Number Of Invocations Constraint

By default, a non-file macro must be invoked exactly once by one other
macro. Macros that aren't are flagged with errors by the FunnelWeb
analyser. However, if the user uses the @Z sequence in the macro
definition, the macro is then permitted to be invoked zero times, as well as
once. Similarly, if the user uses the @M sequence in the macro definition,
the macro is permitted to be called many times as well as once. If both @Z
and @M are present then the macro is permitted to be invoked zero, one,
or many times.

The purpose of enforcing the default "exactly one call" rule is to flag
pieces of code that the user may have defined in a macro but not hooked
into the rest of the program. Experience shows that this is a common error.
Similarly, it can be dangerous to multiply invoke a macro intended to be
invoked only once. For example, it may be dangerous to invoke a scrap of
non-idempotent initialization code in two different parts of the main
function of a program! However, FunnelWeb will not generate an error if
a macro without @M is called by another macro that is called more than
once.

4.8 Macros

http://www.ross.net/funnelweb/reference/parser_macros.html (1 of 3) [3/3/2000 10:46:46 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

Additive Macros

If the text string == (or nothing) follows the macro name, the expression
that follows is the entire text of the macro body. If the text string +=
follows the macro name, then more than one such definition is allowed
(but not required) in the document and the body of the macro consists of
the concatenation of all such expressions in the order in which they occur
in the input file. Such a macro is said to be additive and is additively
defined. Thus a macro body can either be defined in one place using one
definition (using ==) or it can be distributed throughout the input file in a
sequence of one or more macro definitions (using +=). If neither == and
+= are present, FunnelWeb assumes a default of ==.

Macros attached to product files cannot be additively defined. Additively
defined macros can have parameter lists and @Z and @M attributes, but
these must be specified only in the first definition of the macro. However,
+= must appear in each definition.

Library Macros

An ordinary macro definition can have from zero to five @L library level
markers. These define the macro definition's library level. A macro having
a particular name may be defined up to once at each library level, and each
such definition may be multipart (additive). At tangle time, the definition
having the lowest library level is used, with all other definitions of the
same name being completely ignored. This feature allows the creation of
general-purpose include files that contain macro definitions that can be
overridden by definitions of the same name in the including file. Similarly,
it allows the creation of include files containing macro definitions that
override definitions in the including file. How you use the library macro
feature is up to you.

In the example below, the ugly duckling macro will be expanded to swan
because the swan definition has the lowest library level.

@$@<ugly duckling@>@M@L@L@{egg@}
@$@<ugly duckling@>@M@{swan@}
@$@<ugly duckling@>@M@L@{signet@}

Note that the library macro facility imposes no requirement on the order of
appearance of the various macros of the same name; all that matters is the
library level. This means that macros defined in an include file that is
included at the end of a main file can be overridden by macros appearing
earlier in the main file.

4.8 Macros

http://www.ross.net/funnelweb/reference/parser_macros.html (2 of 3) [3/3/2000 10:46:46 PM]

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.9 Macro Names
Names are used to identify macros and sections. A name consists
of a sequence of from zero to 80 printable characters, including
the blank character. End of line characters are not permitted in
names. Names are case sensitive; two different macros are
permitted to have names that differ in case only. Like free text,
names are typeset by FunnelWeb and are safe from
misinterpretation by the target typesetter. For example, it is quite
acceptable to use the macro name @<\medskip@> even if the
target typesetter is TeX.

name = "@<" name_text "@>"
name_text = { ordinary_char | text_special }

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

4.9 Macro Names

http://www.ross.net/funnelweb/reference/parser_macros_name.html [3/3/2000 10:46:49 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.10 Formal Parameter Lists
FunnelWeb allows macros to have up to nine macro parameters, named @1,
@2, ..., @9. If a macro does not have a formal parameter list, it is defined to
have no parameters, and an actual parameter list must not appear at the point of
call. If a macro has a formal parameter list, it is defined to have one or more
parameters, and a corresponding actual parameter must be supplied for each
formal parameter, at the point of call.

Because FunnelWeb parameters have predictable names, the only information
that a formal parameter list need convey is how many parameters a macro has.
For this reason a formal parameter list takes the form of the highest numbered
formal parameter desired, enclosed in parentheses sequences.

formal_parameter_list = "@(" formal_parameter "@)".
formal_parameter = "@1" | "@2" | "@3" | "@4" | "@5" |
 "@6" | "@7" | "@8" | "@9"

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

4.10 Formal Parameter Lists

http://www.ross.net/funnelweb/reference/parser_macros_params.html [3/3/2000 10:46:51 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.11 Expressions
Expressions are FunnelWeb's most powerful form of expressing
a text string. Macro bodies are defined as expressions. Actual
parameters consist of expressions.

An expression consists of a sequence of zero or more
expression elements. An expression element can be ordinary
text, a macro call, or a formal parameter of the macro definition
in which the formal parameter occurs.

expression = { ordinary_text | macro_call |
 formal_parameter }

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

4.11 Expressions

http://www.ross.net/funnelweb/reference/parser_expressions.html [3/3/2000 10:46:54 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.12 Macro Calls
A macro call consists of a name optionally followed by an
actual parameter list. The number of parameters in the actual
parameter list must be the same as the number of formal
parameters specified in the definition of the macro. If the macro
has no formal parameter list, its call must have no actual
parameter list.

macro_call = name [actual_parameter_list]
actual_parameter_list =
 "@(" actpar { "@," actpar } "@)"
actpar = expression |
 (whitespace "@""" expression
 "@""" whitespace)
whitespace = {" " | eol }

FunnelWeb allows parameters to be passed directly, or
delimited by special double quotes. Each form is useful under
different circumstances. Direct specification is useful where the
parameters are short and can be all placed on one line. Double
quoted parameters allow whitespace on either side (that is not
considered part of the parameter) and are useful for laying out
rather messy parameters. Here are examples of the two forms.

@<Generic Loop@>@(
 @"x:=1;@" @,
 @"x<=10;@" @,
 @"print "x=%u, x^2=%u",x,x*x;
 x:=x+1;@+@"
@)

@<Colours@>@(red@,green@,blue@,yellow@)

The two forms may be mixed within the same parameter list.

Experience has shown that, in most FunnelWeb files, the vast
majority of macros have no parameters.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights

4.12 Macro Calls

http://www.ross.net/funnelweb/reference/parser_macro_calls.html (1 of 2) [3/3/2000 10:46:57 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.13 Macro Formal Parameters
Formal parameters can appear in the expressions forming macro bodies in
accordance with the syntax rules defined above. A formal parameter expands to
the text of the expansion of its corresponding actual parameter. There is nothing
preventing a formal parameter being provided as part of an expression that forms
an actual parameter. In that happens, the formal parameter is bound to the actual
parameter of the calling macro, not the called macro. After the following
definitions,

@$@<One@>@(@1@)=@{A walrus in @1 is a walrus in vain.@}
@$@<Two@>@(@1@)=@{@<One@>@(S@1n@)@}

the call

@<Two@>@(pai@)

will result in the expansion

A walrus in Spain is a walrus in vain.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

4.13 Macro Formal Parameters

http://www.ross.net/funnelweb/reference/parser_parameters.html [3/3/2000 10:47:00 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

4.14 Macros Are Static
In FunnelWeb, the actions of macro definition and macro
expansion occur during two separate phases (parser and tangle)
and cannot be interleaved. As a result, the FunnelWeb macro
facility is completely static. It is not possible for one macro to
define another while the first macro is being expanded; each
must be defined statically. It is not possible to define a macro to
even assist in the definition of other macros. Because the
scanner, parser, analyser, and tangler phases are all invoked
sequentially, there is no room for feedback of definitions
between different levels (e.g. the user cannot define a macro for
the vskip pragma).

This lack of power is fully intentional. By totally excluding the
more incomprehensible ways in which a general purpose macro
preprocessor can be used, FunnelWeb provides definite
guarantees to the reader of its input files:

FunnelWeb guarantees that a piece of text does not
contain a macro call unless it contains the special
character followed by < or #.

●

FunnelWeb allows calls to be made to macros that are
defined later in the input file.

●

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

4.14 Macros Are Static

http://www.ross.net/funnelweb/reference/parser_static.html [3/3/2000 10:47:03 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

5 Analyser
The effect of the parser is to construct a macro table containing
a representation of all the macros defined within the document,
and a document list which contains a complete representation of
the entire document. If there are no error diagnostics (or worse)
at the end of the parser run, FunnelWeb invokes the analyser
which tests for the following conditions and flags them with
errors if they arise.

No macros defined in the input file.●

No macros connected to output files.●

Call of an undefined macro.●

Call having the wrong number of parameters.●

Call of a macro that is connected to an output file.●

No calls made to a macro without the @Z option.●

More than one call made to a macro without the @M
option.

●

Directly or indirectly recursively defined macros.●

Unnamed sections that contain no macro definitions.●

FunnelWeb performs a static analysis to detect recursion.
Unfortunately, the recursion detection algorithm flags all
macros that have an infinite expansion rather than just all
macros with a recursive definition. If A calls B, and B calls C,
and C calls B, then FunnelWeb will flag A as well as B and C.
It is hoped that this problem will be fixed in a later version.

Because FunnelWeb does not provide any kind of conditional
feature, the prevention of recursion does not represent a
curtailment of expressive power.

Macros may be invoked recursively, but may not be recursive.
Thus:

@! LEGAL recursive invocation.
@<Sloth@>@(@<Sloth@>@(Walrus@)@)

@! ILLEGAL recursive definition.
@$@<Teapot@>==@{@<Teapot@>@}

5 Analyser

http://www.ross.net/funnelweb/reference/analyser.html (1 of 2) [3/3/2000 10:43:04 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

6 Tangle
If the scanner, parser, and analyser have successfully (i.e. with
no errors, severe errors, or fatal errors) completed, and the
Tangle option (+O) is turned on (it is by default), then the
Tangle component of FunnelWeb is invoked to generate the
product files specified in the @O macros of the input file.

The operation of Tangle is very simple. Each @O macro is
expanded and written to a file of the same name. As there are a
finite number of macros, and the analyser guarantees that the
macro structure is non-recursive, Tangle is guaranteed to
terminate.

Three remaining points are worth mentioning.

Tangle expands macros using blank indentation unless
the user has specified otherwise in an indentation pragma
in the input file.

●

Tangle keeps track of the length of the lines that it is
writing and issues an error if any line of any product file
that it generates is longer than the maximum. The
maximum is the minimum of a value defaulted or
specified in the input file, and the value (if any) provided
by the +w command line argument.

●

If there is more than one macro definition of the same
name, then each such definition must have a different
library level (@L). Tangle uses the macro definition that
has the lowest library level and ignores the others
completely.

●

Memory Use During Tangling

When FunnelWeb executes, it reads each input file (the main
input file and any include files) into memory where they are
kept for the duration of the run. This means that there must be
room in memory for all of the input files. This approach is
necessary to support FunnelWeb's unrestricted forward
referencing.

In contrast, there is no requirement that there be enough
memory to hold the product files, as these are written to disk
sequentially during their expansion. Furthermore, FunnelWeb

6 Tangle

http://www.ross.net/funnelweb/reference/tangle.html (1 of 2) [3/3/2000 10:43:12 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

does not expand the values of actual parameters in memory.

This means that, so long as the input files fit in memory, your
product files can be arbitrarily large. You can also pass
arbitrary large arguments to FunnelWeb macros.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

6 Tangle

http://www.ross.net/funnelweb/reference/tangle.html (2 of 2) [3/3/2000 10:43:12 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

7 Weave
If the scanner, parser, and analyser have successfully (i.e. with
no errors, severe errors, or fatal errors) completed, and either or
both of the two Weave options (+T, U) is turned on (both are
off by default), then the Weave component of FunnelWeb is
invoked to generate one or two documentation files.

Target Typesetter

All versions of FunnelWeb up to V3.1 could generate only TeX
documentation. This used the +t option. FunnelWeb V3.2 can
now generate HTML documention using the +u option. You
can generate both at once if you like.

Cross Reference Numbering

When FunnelWeb produces its typeset documentation, it
numbers each section and each macro definition and cross
references the macro definitions. The exact scheme used has
been carefully thought out. However, as it can be a little
confusing to the beginner, it is explained here in full.

The most important thing is that there is no relation between
the macro numbering and the section numbering. In Knuth's
Web there are only section numbers. In FunnelWeb, the
numbering of sections and macros is separated.

In FunnelWeb, sections are numbered hierarchically in
ascending order. For example, the second level-C section of the
third level-B section of the first level-A section is numbered
"1.3.2". In contrast, macro definitions are numbered
sequentially in ascending order. For example, the first macro
definition is number 1, the second is number 2, and so on. Note
that it is macro definitions that are numbered, not macros .
This distinction is necessary because additive macros (i.e. the
ones with +=) can be defined by a collection of partial
definitions scattered throughout the input file. A single additive
macro may be defined in definitions 5, 67, 128, and 153.

7 Weave

http://www.ross.net/funnelweb/reference/weave.html (1 of 2) [3/3/2000 10:43:23 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

8 FunnelWeb Shell
8.1 Introduction
8.2 Return Statuses
8.3 Command Line Length
8.4 String Substitution
8.5 How a Command Line is Processed
8.6 Options

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

8 FunnelWeb Shell

http://www.ross.net/funnelweb/reference/shell.html [3/3/2000 10:43:27 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

8.1 Introduction
One of the goals of FunnelWeb is that it must be extremely
portable, and a significant effort has gone into achieving this.

An equally important goal was that of correctness and
reliability. To this end, it was determined that a large automated
suite of test programs be prepared to assist in regression testing.
Preparing the test suite was tedious, but achievable. Automating
it portably was more difficult.

The difficulty faced was that if FunnelWeb was implemented in
the form of a utility that could be invoked from the operating
system command language, the only way to set up regression
testing was in the command language of the operating system
of the target machine (shellscripts for UNIX, DCL for
OpenVMS, batch files for MSDOS, and nothing on the
Macintosh). The huge variation in these command languages
led to the conclusion that either the automation of regression
testing would have to be rewritten on each target machine, or a
small command language would have to be created within
FunnelWeb. In the end, the twin goals of portability and
regression testing were considered so important that a small
command shell was constructed inside FunnelWeb. This is
called the FunnelWeb command shell, or just "the shell" for
short.

By default, when FunnelWeb is invoked, it does not enter its
shell. If just given the name of an input file, it will simple
process the input file in the normal manner and then terminate.
To instruct FunnelWeb to invoke its shell, the +K or +X
command line option must be specified when FunnelWeb is
invoked from the operating system. It is also invoked upon
startup if the file fwinit.fws exists.

Most FunnelWeb users will never need to use the shell and
need not even know about it. There are four main uses of the
shell:

As a tool to support automated regression testing.1.

As a development tool on machines that do not have a
built in shell (e.g. the Macintosh). The shell can be used
to process whole groups of files automatically.

2.

As a convenience. A user working on a multi-tasking,3.

8.1 Introduction

http://www.ross.net/funnelweb/reference/shell_introduction.html (1 of 2) [3/3/2000 10:45:57 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

multi-window workstation may wish to keep an
interactive session of FunnelWeb going in one window
rather than having to run up the utility each time it is
required.

As a convenient vehicle for enclosing utilities. The
FunnelWeb shell contains useful general purpose
commands such as the differences command diff.

4.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

8.1 Introduction

http://www.ross.net/funnelweb/reference/shell_introduction.html (2 of 2) [3/3/2000 10:45:57 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

8.2 Return Statuses
The hierarchy of diagnostics is also used in the shell
commands. Each shell command returns a status which can
affect further processing.

Success status is the normal command return
status.

Warning status is returned if some minor problem
arose with the execution of the command.

Error status is returned if a significant problem
arises during the execution of the command.
However, unlike a severe error, it does not cause
termination of the enclosing shellscript.

Severe error status is returned if a problem arises
during the execution of the command that prevents
the command from delivering on its "promise". A
severe error causes FunnelWeb to abort the script
(and any stacked scripts) to the interactive level.
(However, the tolerate command allows this to be
temporarily overridden).

Fatal error status is returned if a problem arises
that is so serious that execution of FunnelWeb
cannot continue. A fatal error causes FunnelWeb
to abort to the operating system level.

Assertion error status is never returned. If an
assertion error occurs, FunnelWeb bombs out
ungracefully to the operating system. Assertion
errors should never happen. If they do, then there
is a bug in FunnelWeb.

To be precise, the status returned by each command is a vector
of numbers being the number of each of the different kinds of
diagnostic generated by the command. Usually only one kind of
diagnostic is generated. However, the fw command and a few
of the other commands can generate more than one kind of
diagnostic. These status vectors are summed internally where
they may later be accessed using the status command. However,
the current diagnostic state evaporates as soon as the next
command is encountered.

8.2 Return Statuses

http://www.ross.net/funnelweb/reference/shell_statuses.html (1 of 2) [3/3/2000 10:46:00 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

8.3 Command Line Length
The maximum length of a shell command line is guaranteed to
be at least 300 characters.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

8.3 Command Line Length

http://www.ross.net/funnelweb/reference/shell_linelen.html [3/3/2000 10:46:03 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

8.4 String Substitution
Most command shells provide some form of string substitution so as to
provide some degree of parameterization. The FunnelWeb shell provides
36 different string variables named $0..$9 and $A..$Z (case insensitive).
Each variable can hold a string containing any sequence of printable
characters and can be as long as a command line.

The define command allows the user to assign a value to these variables.
The define command takes two arguments. The first is the digit or letter of
the variable to be defined. The second is a double quote delimited string
being the string value to be assigned to the variable. If you want to include
a double quote character within the string, you don't need to double it.

Examples:

define 3 "/root/usr/dave/workdir/fwdir/testdir"
define M "/user/local/rubbish/bin/fw"
define Q "You don't need to double" double quotes"

Only the identifying character of the variable being assigned is used in the
definition. This syntax is a simple way of preventing the variable from
being substituted before it has a chance to be defined!

The following points clean up the remaining semantic details:

There is only one set of variables and they are global to all
shellscripts. There are no local variables .

●

When a shellscript is invoked using the execute command, the
substitution variables 0 through 9 are affected. See the EXECUTE
command for more details.

●

If you want to include a dollar sign character in a command use
"$$".

●

FunnelWeb also defines "$/" which translates to the character that
separates directory and file name fields in file names on the host
machine. For example: Sun="/", Vax="]", Mac=":", PC="\".

●

Substitution is not performed recursively.●

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

8.4 String Substitution

http://www.ross.net/funnelweb/reference/shell_strsubs.html [3/3/2000 10:46:08 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

8.5 How a Command Line is
Processed
When FunnelWeb reads in a command line (from the console
or a script file), it processes it in the following sequence:

The command line is checked for non-printable
characters. If there are any, they are flagged with a severe
error.

1.

All dollar string substitution variables in the command
line are replaced by their corresponding string. The
command line is processed from left to right.
Substitutions are performed non recursively.

2.

At this point, if the line is empty, or consists entirely of
blanks, it is ignored and the interpreter moves to the next
line.

3.

A severe error is generated if the line at this stage begins
with a blank.

4.

If the first character of the line is "!", the line is a
comment line and is ignored.

5.

The run of non-blanks commencing at the start of the line
is compared case-insensitively to each of the legal
command verbs. If the command is illegal, a severe error
is generated, otherwise the command is processed.

6.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

8.5 How a Command Line is Processed

http://www.ross.net/funnelweb/reference/shell_processing.html [3/3/2000 10:46:13 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

8.6 Options
The FunnelWeb shell maintains three sets of command line options.

The set of options resulting from applying the operating system level
command line arguments to the default option settings.

1.

A set of shell options that prevail during the shell invocation.2.

The set of option values active during a particular invocation of
FunnelWeb proper.

3.

When FunnelWeb is invoked from the operating system with just +F, only
the first of these three sets comes into existence. If the user invokes the
FunnelWeb shell, the shell options come into existence and are initialized
with the value of the first set. These shell options are used as the default for
all subsequent fw commands. However, they can be altered using the script
command set. If a fw command executed in a shell contains additional
command line options, these override the shell options for that run, but do not
change the shell options. An example follows:

$ fw +k +t ! Original invocation from OS.
 ! Options default with "+t".
FunnelWeb>fw sloth ! Equivalent to fw sloth +t.
FunnelWeb>set -l ! Change the l shell option.
FunnelWeb>fw sloth +q ! Equiv to fw sloth +t -l +q.
FunnelWeb>fw sloth ! Equiv to fw sloth +t -l.

The existence of the shell option set means that the user can set up a set of
defaults to be applied to all fw commands issued within the shell.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

8.6 Options

http://www.ross.net/funnelweb/reference/shell_options.html [3/3/2000 10:46:16 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9 Shell Commands
9.1 Introduction
9.2 Absent
9.3 Codify
9.4 Compare
9.5 Define
9.6 Diff
9.7 Diffsummary
9.8 Diffzero
9.9 Eneo
9.10 Execute
9.11 Exists
9.12 Fixeols
9.13 Fw
9.14 Help
9.15 Here
9.16 Quit
9.17 Set
9.18 Show
9.19 Skipto
9.20 Status
9.21 Tolerate
9.22 Trace
9.23 Write
9.24 Writeu

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9 Shell Commands

http://www.ross.net/funnelweb/reference/commands.html [3/3/2000 10:43:30 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.1 Introduction
This section describes each of the FunnelWeb shell commands. The
syntax is:

shell_command = absent | codify | compare |
 define | diff | diffsummary |
 diffzero | eneo | execute |
 exists | fixeols | help |
 here | quit | set |
 show | skipto | status |
 tolerate | trace | write |
 writeu
s = { " " }+

As a rule, FunnelWeb shell commands return severe status if their
arguments are syntactically incorrect or if they are unable to successfully
operate on argument files.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.1 Introduction

http://www.ross.net/funnelweb/reference/commands_introduction.html [3/3/2000 10:43:58 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.2 Absent
The absent command performs no action except to return a
status. If the file specified in its argument doesn't exist it returns
success status, otherwise it returns severe status.

Syntax : absent = "absent" s filename
Example: absent result.out

This command is useful in regression testing for making sure
that FunnelWeb hasn't produced a particular output file.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.2 Absent

http://www.ross.net/funnelweb/reference/commands_absent.html [3/3/2000 10:44:01 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.3 Codify
The codify command takes two arguments: an input file and an output file. It
reads each line of the input file and writes a corresponding line to the output file.
The corresponding line consists of a C macro call containing a string containing
the input line. The command converts all backslashes in input lines to double
backslashes so as to avoid unwanted interpretations by the C compiler. It also
converts double quotes in the line to backslashed double quotes.

Syntax : codify = "codify" s filename s filename
Example: codify header.tex header.c

The following example demonstrates the transformation.

Input Line:
 \def\par{\leavevmode\endgraf}% A "hack".
Output Line:
 WX("\\def\\par{\\leavevmode\\endgraf}% A \"hack\".");

The codify command was introduced to assist in the development of
FunnelWeb. It is used to convert longish text files into C code to write them out.
The C code is then included within the FunnelWeb C program. For example, the
set of TeX definitions that appears at the top of every documentation file was
codified and inserted into the FunnelWeb code so that FunnelWeb would not
have to look for a file containing the definitions at run time.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.3 Codify

http://www.ross.net/funnelweb/reference/commands_codify.html [3/3/2000 10:44:10 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.4 Compare
The compare command takes two filename arguments and performs a
binary comparison of the two files. If the files are identical, success status
is returned. If they are different, severe status is returned. No information
about the manner in which the files differ is conveyed.

Syntax : compare = "compare" s filename s filename
Example: compare result.txt answer.txt

The compare command was created as the main checking mechanism for
regression testing. However, its binary output was soon found to be
unworkable and the more sophisticated diff command was added so that
the actual differences between the files could be examined.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.4 Compare

http://www.ross.net/funnelweb/reference/commands_compare.html [3/3/2000 10:44:20 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.5 Define
The define command assigns a value to a shell string substitution variable. The
define command takes two arguments. The first is the digit or letter of the
variable to be defined. The second is a double quote delimited string being the
string value to be assigned to the variable. If you want to include a double quote
character within the string, you don't need to double it.

Syntax :
 define = "define" s letter s """" text """"
Examples:
 define 3 "/usr/usrs/thisuser/workdir/fwdir/testdir"
 define M "/user/local/rubbish/bin/fw"
 define Q "You don't need to double" double quotes"

The command interpreter expands the command line before it executes the
define command. This means that you can define string substitution variables in
terms of each other with static binding.

The define command was introduced to allow the parameterization of the
directories involved in regression testing.

See the section on string substitution for more details.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.5 Define

http://www.ross.net/funnelweb/reference/commands_define.html [3/3/2000 10:44:32 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.6 Diff
The diff command reads in two text files and appends a report to a log file
containing a list of the differences between the two input files. If the log
file does not already exist, an empty one is created first.

Syntax :
 diff = "diff" s filename s filename s
 filename s ["ABORT"]
Examples:
 diff result.tex answer.tex diff.log
 diff $Otest23.out $Atest23.out $Ldiff.log ABORT

The diff command performs a full line-based differences operation. It will
identify different sections in a file, even if they are of differing length.

The implementation of the diff command is quite complicated. To be sure
that it is at least getting its same/different proclamation right, the diff
command performs a binary comparison as an extra check.

The following points describe the rules for determining the result status.

diff aborts with a severe error if the log file cannot be opened or
created for appending.

1.

An ordinary error is generated if either or both of the input files
cannot be opened.

2.

If, at the end of the run, the two input files have not been proven to
be identical, and the ABORT keyword is present, diff returns severe
status.

3.

diff returns success status if none of the above conditions (or similar
conditions) occur, even if the two files are different.

4.

The diff command appends its differences report rather than merely
writing it. This allows a regression test script to perform a series of
regression tests and produce a report for the user.

The diff command was added to the shell after it had become apparent that
the simpler compare command was not yielding enough information.
Whereas early on, regression testing was treated mainly as a tool to ensure
that FunnelWeb was being ported to other machines correctly, it began to
place an increasing role during development in identifying the effects of
changes made to the code. The diff command supports this application of
regression testing by pinpointing the differences between nearly-identical
text files.

9.6 Diff

http://www.ross.net/funnelweb/reference/commands_diff.html (1 of 2) [3/3/2000 10:44:36 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.7 Diffsummary
The diffsummary command writes a short report to the console
giving the number of difference operations that have taken
place and how many of the pairs of files compared were
identical. Counting starts at the most recent execution of a
diffzero command, or if there has been none, when FunnelWeb
started up.

Syntax : diffsummary = "diffsummary"
Examples: diffsummary

The diffsummary command was added so as to allow regression
testing scripts to display a summary of the results of the test. If
the summary indicates that no pair of files differed, then there is
no need to look in the diff log file.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.7 Diffsummary

http://www.ross.net/funnelweb/reference/commands_diffsummary.html [3/3/2000 10:44:39 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.8 Diffzero
The diffzero command zeros the different summary counters
used by the diff and diffsummary commands.

Syntax : diffzero = "diffzero"
Examples: diffzero

The diffzero command was added so as to allow regression
testing shellscripts to zero their differences counters at the start
of a run. This allows testers to invoke the same regression
testing script twice in one interactive session without receiving
an inflated differences summary.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.8 Diffzero

http://www.ross.net/funnelweb/reference/commands_diffzero.html [3/3/2000 10:44:43 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.9 Eneo
The eneo command takes one filename argument. If the file
does not exist, no action is taken. If the file does exist, it is
deleted. In both cases success status is returned. However, if the
file exists and cannot be deleted, eneo returns severe status.

Syntax : eneo = "eneo" s filename
Examples: eneo result.out

The eneo command was added so as to allow regression testing
scripts to ensure that existing output files were not present
before proceeding with a test run. If FunnelWeb were to fail to
generate an output file, it would be extremely undesirable for
the old version to be used.

ENEO stands for Establish the Non Existence Of. Most
operating systems provide a command to delete files. Typically
these commands are verbs such as "delete", "remove", and
"kill". As a consequence, the designers of delete commands
usually consider the command to have failed if it fails to find
the file to be deleted. However, in scripts, the delete command
is very commonly used to establish the non-existence of one or
more files. Typically, a script is starting up and needs to clear
the air before getting started. If the files are there, they should
be deleted; if they are not, then that's OK too. (Note: As far as I
know, the eneo command is original).

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.9 Eneo

http://www.ross.net/funnelweb/reference/commands_eneo.html [3/3/2000 10:44:47 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.10 Execute
The execute command causes a specified text file to be executed as a
FunnelWeb shellscript. The first argument is the name of the script file. The
remaining arguments are assigned to the substitution variables $1, $2, ...,
$9. Substitution variables in the range $1 to $9 that do not correspond to an
argument are set to the empty string "". $0 is set to the empty string
regardless. The execute command can be used recursively, allowing shell
scripts to invoke each other. A file extension default of ".fws"
(FunnelWeb Script) applies to script files.

Syntax :
 execute = "execute" s filename {argument_string}
Examples:
 execute megatest.fws /usr/users/ross/fwtest !
 execute sloth

The first example above will result in the following substitution variable
assignments.

$0 = ""
$1 = "/usr/users/ross/fwtest"
$2 = "!"
$3 = ""
...
$9 = ""

It should be stressed that there are no local variables in the FunnelWeb
command language; the variables above are globally modified.

The execute command was added to allow the creation of sub-scripts to test
FunnelWeb in particular ways.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.10 Execute

http://www.ross.net/funnelweb/reference/commands_execute.html [3/3/2000 10:44:49 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.11 Exists
The exists command performs no action except to return a
status. If the file specified in its argument exists it returns
success status, otherwise it returns severe status.

Syntax : exists = "exists" s filename
Example: exists test6.fw

This command is useful in regression testing for ensuring that
FunnelWeb has produced a particular output file.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.11 Exists

http://www.ross.net/funnelweb/reference/commands_exists.html [3/3/2000 10:44:52 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.12 Fixeols
The fixeols command takes two filename arguments: an input file and an
output file. It reads in the input file and writes it to the output file changing all
the end of line control character sequences to the local format. It can also take
one filename argument, in which case it replaces the target file with its
transformation.

Syntax : fixeols = "fixeols" s filename [s filename]
Examples: fixeols imported.hak result.kln
 fixeols sloth.dat

The fixeols command works by parsing the input file into alternating runs of
printable characters (ASCII 20 to ASCII 126) and runs of non-printable
characters (all the others). It then parses each run of non-printable characters
from left to right into subruns of non-printables not containing the same
character twice. It then replaces each subrun with a native EOL. (Note: A
native EOL can be inserted into a text file in a portable manner simply by
writing "\n" to the text output stream). For example, if a native EOL is X, and
ABCD are non-printable characters, and the file to be converted is

thisABisABCDanABABexampleABCCCof the conversion.

then fixeols would produce

thisXisXanXXexampleXXXof the conversion.

The fixeols command was devised to solve the problem created sometimes
when text files are moved from one machine to another (e.g. with the Kermit
program) using a binary transfer mode rather than a text transfer mode. If such
a transfer is made, and the text file line termination conventions differ on the
two machines, one can wind up with a set of text files with improperly
terminated lines. This can cause problems on a number of fronts, but in
particular affects regression testing which relies heavily on exact comparisons
between files. The fixeols command provides a solution to this problem by
providing a portable way to "purify" text files whose end of lines have become
incorrect. The regression testing scripts all apply fixeols to their input and
output files before each test.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.12 Fixeols

http://www.ross.net/funnelweb/reference/commands_fixeols.html [3/3/2000 10:44:55 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.13 Fw
The fw command allows FunnelWeb proper to be invoked from a shell script.
The syntax is almost identical to the syntax with which FunnelWeb is invoked
from the operating system.

Syntax : fw = "fw" s ordinary_funnelweb_command_line
Examples: fw sloth +t +d
 fw -l walrus

Some important points about this fw command are:

Options are inherited from the default shell options.●

The F (input file option) must be turned on.●

The K, H, and X options must be turned off.●

The J option must be turned off.●

The options specified in a fw command do not affect the default shell
options.

●

This command performs no action in the OpenVMS version of
FunnelWeb.

●

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.13 Fw

http://www.ross.net/funnelweb/reference/commands_fw.html [3/3/2000 10:44:58 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.14 Help
The help command provides online help from within the
FunnelWeb shell. It provides access to all of the same messages
that the +H command line option does.

Syntax : help = "help" [s help_message_name]
Examples: help
 help commands

If no message name is given, the default message is displayed. It
contains a list of the other help messages and their names. The
actual messages themselves are not listed here.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.14 Help

http://www.ross.net/funnelweb/reference/commands_help.html [3/3/2000 10:45:01 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.15 Here
The here command acts as a target for the skipto command.
When the shell interpreter encounters a skipto command, it
ignores all the following commands until it encounters a here
command.

Syntax : here = "here"
Example: here

The skipto/here mechanism was created to allow groups of
regression tests to be skipped during debugging without having
to comment them out.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.15 Here

http://www.ross.net/funnelweb/reference/commands_here.html [3/3/2000 10:45:05 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.16 Quit
The quit command terminates FunnelWeb immediately and
returns control to the operating system. This applies regardless
of the depth of the script being executed.

Syntax : quit = "quit"
Example: quit

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.16 Quit

http://www.ross.net/funnelweb/reference/commands_quit.html [3/3/2000 10:45:09 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.17 Set
The set command modifies the default shell options. For example, set
+t sets the +t option for all subsequent FunnelWeb runs within the shell
until another set command sets -t.

Syntax:
 set = "set" s ordinary_funnelweb_command_line
Examples:
 set sloth +t +d
 set -lwalrus

The restrictions on the set command are identical to those on the fw
command except that, in addition, the +F option cannot be turned on in
the set command.

The set command is useful for setting option defaults before a long run
of regression tests. It could also be useful to set default options in a
FunnelWeb shell kept by a user in a workstation window.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.17 Set

http://www.ross.net/funnelweb/reference/commands_set.html [3/3/2000 10:45:12 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.18 Show
The show command displays the current default shell options.
These options are the options that subsequent fw commands
will inherit.

Syntax : show = "show"
Example: show

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.18 Show

http://www.ross.net/funnelweb/reference/commands_show.html [3/3/2000 10:45:15 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.19 Skipto
The skipto command causes the shell to ignore all subsequent
commands until a here command is encountered.

Syntax : skipto = "skipto"
Examples: skipto

The skipto/here mechanism was created to allow groups of
regression tests to be skipped during debugging without having
to comment them out. It is like a cut price goto. For example,
supposing that there were eight tests and that you had debugged
the first five. You might want to skip the first five tests so that
you can concentrate on the next three. The following code
shows how this can be done.

skipto
execute test infile1
execute test infile2
execute test infile3
execute test infile4
execute test infile5
here
execute test infile6
execute test infile7
execute test infile8

It should be stressed that FunnelWeb performs full command
line processing including the dollar substitutions before testing
the line to see if it is here. This can lead to non-obvious
problems. For example.

skipto
! Test the Parser
! ---------------
define X "execute parsertest.fws"
$X infile1
$X infile2
$X infile3
$X infile4
$X infile5
here

9.19 Skipto

http://www.ross.net/funnelweb/reference/commands_skipto.html (1 of 2) [3/3/2000 10:45:18 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

The above looks correct, but, because the define command isn't
executed (and $X is not defined) the subsequent $X lines result
in a leading blanks error. The problem can be corrected by
defining $X before the skipto command.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.19 Skipto

http://www.ross.net/funnelweb/reference/commands_skipto.html (2 of 2) [3/3/2000 10:45:18 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.20 Status
The status command takes two forms. In its first form in which no arguments
are given, it writes out the number of warnings, errors and severe errors that 1)
were generated by the previous command and 2) have been generated during
the entire shell invocation. In its second form it takes from one to three
arguments each of which specifies a diagnostic severity and a number. The
status command compares each of these numbers with the number of that
diagnostic generated by the previous command and generates a severe error if
they differ.

Syntax : status = "status" {s ("w"|"e"|"s") num}0..3
Examples: status
 status w1 e5 s1
 status w4
 status s1 e2

The status command was introduced to test the status results of commands
during their debugging. It is also useful for checking to see that the right
number of diagnostics have been generated at particular points in test scripts.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.20 Status

http://www.ross.net/funnelweb/reference/commands_status.html [3/3/2000 10:45:25 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.21 Tolerate
The tolerate command instructs the shell not to abort processing
of the script if the next command generates one or more
warnings, errors, or severe errors. For the purposes of this
command, a blank line counts as a command, so be sure to
place the tolerate command immediately above the command
about which you wish to be tolerant.

Syntax : tolerate = "tolerate"
Example: tolerate

The tolerate command was introduced to allow FunnelWeb (i.e.
the fw command) to be tested in a script under conditions which
would normally cause it to abort the script.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.21 Tolerate

http://www.ross.net/funnelweb/reference/commands_tolerate.html [3/3/2000 10:45:31 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.22 Trace
The trace command turns on or off command tracing during
script execution. By default, tracing is turned off.

Syntax : trace = "trace" [s ("on" | "off")]
Examples: trace on
 trace off

The trace command was introduced to assist in the debugging of
regression test scripts.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.22 Trace

http://www.ross.net/funnelweb/reference/commands_trace.html [3/3/2000 10:45:34 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.23 Write
The write command accepts a double-quoted argument and writes it followed by
an EOL to the console (standard output). There is no need to double any double
quotes occurring within the string.

Syntax:
 write = "write" s string
Examples:
 write "Now about to start the next test."
 write "No need to " double enclosed double quotes."

The write command was added so as to allow regression testing scripts to inform
the user of their progress.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights reserved.

9.23 Write

http://www.ross.net/funnelweb/reference/commands_write.html [3/3/2000 10:45:39 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

9.24 Writeu
The writeu command is identical to the write command except
that it underlines the text on an additional following output line.

Syntax : writeu = "writeu" s string
Examples: writeu "Test 6"

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

9.24 Writeu

http://www.ross.net/funnelweb/reference/commands_writeu.html [3/3/2000 10:45:51 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

10 Glossary
Analyser: A component of the FunnelWeb program that checks
the macro table created by the parser for errors. For example,
the analyser checks to see if any macro without a @Z has not
been called.

Argument: A string delimited by blanks appearing on the
FunnelWeb command line. Arguments are used to control
options.

Directive: A FunnelWeb special sequence or cooperating group
of special sequences that do not form part of a macro definition.
A directive can take the form of a pragma.

Documentation: Descriptive text.

Documentation file: An output file, produced by the Weave
component of FunnelWeb, that contains typesetter commands.
When fed into the appropriate typesetter program, the result is a
typeset image of the input file.

Free text: The text in an input file that remains if one were to
remove macro definitions and directives.

FunnelWeb: This word has a number of different meanings all
pertaining to the FunnelWeb system of programming. 1) The
entire system of programming as in "Maybe FunnelWeb can
help." 2) The computer program that implements the system as
in "Run it through FunnelWeb and see what comes out." 3) The
language implemented by the FunnelWeb program as in "I
wrote the program in FunnelWeb." or "I wrote the program in
Ada using FunnelWeb.".

FunnelWeb file: A file whose contents are written in the
FunnelWeb language.

FunnelWeb language: The language in which FunnelWeb
input files are written.

FunnelWeb proper: Usually, when FunnelWeb is invoked, it
processes a single input file and then terminates. However, it
also has a command language mode in which it is possible to
invoke "FunnelWeb" many times. This leads to confusion
between "FunnelWeb" the outer program and "FunnelWeb" the
inner program. To avoid this confusion, the inner FunnelWeb is

10 Glossary

http://www.ross.net/funnelweb/reference/glossary.html (1 of 3) [3/3/2000 10:43:36 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

sometimes referred to as "FunnelWeb proper".

FW: An abbreviation for "FunnelWeb" that is used wherever
appropriate.

Include file: A file read in by FunnelWeb as the result of an
include pragma (@i filename).

Input file: Any file read in by FunnelWeb. The phrase "the
input file" refers to the root input file (specified using the +F
option).

Journal file: An output file containing a copy of the output sent
to the user's console during an invocation of FunnelWeb. In
other systems, this file is sometimes called a "log file".

Listing file: An output file summarizing the result of
processing an input file.

Macro: A binding of a name to a string.

Macro definition: A construct appearing in a FunnelWeb file
that binds a name to a text string. A FunnelWeb file consists of
a series of macro definitions surrounded by documentary text.

Mapper: A component of the FunnelWeb program that reads in
the input file and creates a copy of it in memory.

Option: An parameter internal to the FunnelWeb program
which can be controlled by command line arguments or
pragmas.

Output file: Any file written by FunnelWeb. This includes
listing, journal, product, and documentation files. (Warning:
During most of FunnelWeb's development the term "output
file" was also used to refer to what are now called "product
files". This turned out to be extremely confusing and so the
term "product file" was invented to distinguish the generic from
the specific. However, as this was a late modification, you may
find some occurrences of the old use of "output file".).

Parser: A component of the FunnelWeb program that
processes the token list generated by the scanner and produces a
macro table and a document list. The parser mainly analyses the
input file at the syntactic level, but also does some lightweight
semantic checking too.

Pragma: Single-line directives that appears in FunnelWeb
files. Pragmas control everything from maximum input line
length to typesetter dependence. A pragma line starts with "@p"

10 Glossary

http://www.ross.net/funnelweb/reference/glossary.html (2 of 3) [3/3/2000 10:43:36 PM]

Printed documentation: Sheets of paper resulting from
actually typesetting and printing a documentation file.

Product file: An output file, generated by the Tangle
component of FunnelWeb, that contains the expansion of the
macros in the input file. Note: Other names considered for this
were: generated file, expanded file, result file, program file, and
tangle file.

Scanner: A component of the FunnelWeb program that scans a
copy of the input file in memory and generates a line list and a
token list to be fed to the parser. The scanner processes the
input at the lexical level.

Script: A file containing FunnelWeb shell commands.

Shell: A command language interpreter built into the
FunnelWeb program. The interpreter allows the user to invoke
FunnelWeb proper many times during a single invocation of the
FunnelWeb program.

Special character: A distinguished character in a FunnelWeb
input file that introduces a special sequence. By default the
special character is "@". However, it can be changed using the
"@=" special sequence.

Special sequence: A special sequence is a construct introduced
by the special character. Special sequences are used to define a
structure in a FunnelWeb input file that exists at a higher level
to the surrounding text. A FunnelWeb input file may be
considered to be a sequence of text and special sequences.

Tangle: This is the name for the component of FunnelWeb that
generates one or more product files containing the expansion of
macros in the input file.

Typesetting directive: A FunnelWeb directive whose sole
effect is to modify the way in which the input file is represented
in the documentation file.

Weave: This is the name for the component of FunnelWeb that
generates a documentation file containing typesetting
commands representing the input file.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

10 Glossary

http://www.ross.net/funnelweb/reference/glossary.html (3 of 3) [3/3/2000 10:43:36 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

11 References
[ANSI] Australian Standard AS 3955-1991, "Programming
Languages --- C", (ISBN: 0-7262-6970-0), 12 July 1991.
Identical to: International Standard ISO/IEC 9899: 1990
Programming Languages --- C.

[ANZE] "Australia, New Zealand Encyclopedia", Entry:
"Funnel-web spiders", Vol 7, pp. 564--565, Bay Books,
Sydney, (ISBN: 85835--127--7), 1975.

[BSI82] British Standards Institute, "Specification for
Computer Programming Language Pascal", Publication
BS6192:1982, British Standards Institute, P.O. Box 372, Milton
Keynes, MK146LO, 1982.

[Gries81] Gries D., "The Science of Programming",
Springer-Verlag, (ISBN: 0-387-90641-X), 1981.

[Humphries91] Humphries B, "Neglected Poems and Other
Creatures", Angus and Robertson, Sydney, (ISBN:
0-207-17212-9), 1991.

[Kernighan88] Kernighan B.W., Ritchie D.M., "The C
Programming Language", (second edition,"ANSI C"), Prentice
Hall, (ISBN: 0-13-110362-8), 1988.

[Knuth83] Knuth D.E., "The WEB System of Structured
Documentation", (Web User Manual, Version 2.5, November,
1983), Stanford University, 1983.

[Knuth84] Knuth D.E., "The TeXbook", Addison-Wesley,
(ISBN: 0-201-13448-9), 1984.

[Knuth84] Knuth D.E., "Literate Programming", The Computer
Journal , Vol. 27, No. 2, pp. 97-111, 1984. (Reference copied
from SIGPLAN 26(1) p.16). Note: The author of this manual
has not yet obtained this paper.

[Lamport86] Lamport L., "LaTeX: A Document Preparation
System", Addison-Wesley, (ISBN: 0-201-15790-X), 1986.

[Rosovsky90] Rosovsky H., "The University: An Owner's
Manual", W.W.Norton & Company, Inc., (ISBN:
0-393-02782-1), 1990.

[Smith91] Smith L.M.C., "An Annotated Bibliography of

11 References

http://www.ross.net/funnelweb/reference/references.html (1 of 2) [3/3/2000 10:43:45 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html

Literate Programming", ACM SIGPLAN Notices, Vol. 26,
No. 1, January 1991.

[Strunk79] Strunk W., White E.B., "The Elements of Style",
Third Edition, MacMillan Publishing Company, New York,
(ISBN: 0-02-418200-1), 1979.

[USDOD83] "The Programming Language Ada Reference
Manual", American National Standards Institute Inc,
ANSI/MIL-STD-1815A-1983, 1983.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

11 References

http://www.ross.net/funnelweb/reference/references.html (2 of 2) [3/3/2000 10:43:45 PM]

mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

Search FunnelWeb Documentation
Information about FunnelWeb is divided into the main
FunnelWeb web and the Tutorial, Reference, and Developer
manual webs. Choose a combination of manuals to search, and
enter one or more keywords.

 FunnelWeb Main Web (General information)
 FunnelWeb Reference Manual (Official definition)
 FunnelWeb Tutorial Manual (Tutorial and hints)
 FunnelWeb Developer Manual (How to compile)

* Enter one or more words or word prefixes separated by spaces.
* Matching is case insensitive.
* Finds all pages containing at least one word.
* Add the word AND to find pages containing all the words.
* Searching will not work in offline copies of this web.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

Search FunnelWeb Documentation

http://www.ross.net/funnelweb/reference/search.html [3/3/2000 10:43:51 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
http://www.ross.net/funnelweb/
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
mailto:webmaster@ross.net

Tutorial

Developer

Reference
1 Introduction
2 Interface
3 Scanner
4 Parser
5 Analyser
6 Tangle
7 Weave
8 Shell
9 Commands
10 Glossary
11 References

SEARCH

Copyright and Credits

Copyright Of The FunnelWeb Program

The FunnelWeb is made available under the GNU General
Public Licence Version 2. See the FunnelWeb Developer
Manual for a complete copy of this licence.

Copyright Of The FunnelWeb Webs

The entire contents of the following webs:

FunnelWeb
FunnelWeb Reference Manual
FunnelWeb Tutorial Manual
FunnelWeb Developer Manual

including, without limitation, all text, images, and sounds are
copyright as follows:

Copyright © Ross N. Williams 1992,1999. All rights
reserved.

Permission is granted to redistribute and use this manual in any
medium, with or without modification, provided that all notices
(including, without limitation, the copyright notice, this
permission notice, any record of modification, and all legal
notices) are preserved on all copies, that all modifications are
clearly marked, and that modified versions are not represented
as the original version unless all the modifications since the
manual's original release by Ross N. Williams (www.ross.net)
consist of translations or other transformations that alter only
the manual's form, not its content. THIS MANUAL IS
PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. TO THE EXTENT PERMITTED BY LAW
THERE IS ABSOLUTELY NO WARRANTY.

Copyright and Credits

http://www.ross.net/funnelweb/reference/copyright.html (1 of 3) [3/3/2000 10:43:55 PM]

http://www.ross.net/
http://www.ross.net/funnelweb/index.shtml
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
http://www.ross.net/funnelweb/developer/index.html
http://www.ross.net/funnelweb/developer/index.html
http://www.ross.net/funnelweb/
http://www.ross.net/funnelweb/tutorial/index.html
http://www.ross.net/funnelweb/developer/index.html
http://www.ross.net/
http://www.ross.net/

Trademarks

Macintosh is a trademark of Apple Computer
MS-DOS is a trademark of Microsoft.
Rocksoft is a registered trademark of Rocksoft Pty Ltd,
Australia.
Unix is a registered trademark of AT&T.
VAX and OpenVMS are trademarks of Digital Equipment
Corporation.

Questions

Please email me if you have any other questions about the
intellectual property aspects of FunnelWeb.

Credits

FunnelWeb was conceived, designed and implemented by Ross
Williams in 1986, 1992, and 1999. The FunnelWeb webs were
originally written by Ross Williams in 1992 in the form of a
printed manual, and converted by him to webs in April 1999.

FunnelWeb was the main tool used to create these FunnelWeb
webs. Each web was written as a single FunnelWeb .fw file
which, when processed by FunnelWeb, generates all the .shtml
files.

I would like to thank a number of people who assisted me (Ross
Williams) during the creation of FunnelWeb.

Many thanks to David Hulse for translating the original version
of FunnelWeb (FunnelWeb V1) from Ada into C (FunnelWeb
V2) and getting it to work on Unix and a PC. The C code
written by David (FunnelWeb V2) formed the basis of
FunnelWeb V3.

Thanks go to Simon Hackett of Internode Systems for the use
of his Sun, Mac, and PC, for assistance in porting FunnelWeb
to the Sun and PC, and for helpful discussions.

Thanks go to Jeremy Begg of VSM Software Services for the
use of his VAX, and for assistance with the VMS-specific code.

Copyright and Credits

http://www.ross.net/funnelweb/reference/copyright.html (2 of 3) [3/3/2000 10:43:55 PM]

http://www.apple.com/
http://www.microsoft.com/
http://www.rocksoft.com/
http://www.att.com/
http://www.digital.com/
http://www.digital.com/
mailto:ross@ross.net
http://www.ross.net/funnelweb/
http://www.ross.net/
http://www.ross.net/
http://www.ross.net/
http://www.ross.net/
http://www.ross.net/
http://www.cs.adelaide.edu.au/~dave
http://www.internode.com.au/people/simon/simon.html
http://www.internode.com.au/
http://www.vsm.com.au/vsm/jeremy.html
http://www.vsm.com.au/

Thanks to Barry Dwyer and Roger Brissenden for trying out
FunnelWeb Version 1 in 1987 and providing valuable feedback.

Thanks to Donald Knuth for establishing the idea of literate
programming in the first place.

Webmaster Copyright © Ross N. Williams 1992,1999. All rights
reserved.

Copyright and Credits

http://www.ross.net/funnelweb/reference/copyright.html (3 of 3) [3/3/2000 10:43:55 PM]

http://www.cs.adelaide.edu.au/users/dwyer/
http://hea-www.harvard.edu/~rjb/HomePage.html
http://www-cs-staff.stanford.edu/~knuth/
mailto:webmaster@ross.net

	ross.net
	FunnelWeb Reference Manual
	1 Introduction
	1.1 Notation
	1.2 Terminology
	1.3 An Architectural Overview
	1.4 Diagnostics
	1.5 Typesetter Independence

	2 Command Line Interface
	2.1 Invoking FunnelWeb
	2.2 Command Line Arguments
	2.3 Options
	2.4 File Name Inheritance
	2.5 FunnelWeb Startup

	3 Scanner
	3.1 Basic Input File Processing
	3.2 Special Sequences
	3.3 Setting the Special Character
	3.4 Inserting the Special Character into the Text
	3.5 Inserting Arbitrary Characters into the Text
	3.6 Comments
	3.7 Quick Names
	3.8 Inserting End of Line Markers
	3.9 Suppressing End of Line Markers
	3.10 Include Files
	3.11 Pragmas
	3.12 Pragma: Indentation
	3.13 Pragma: Maximum Input Line Length
	3.14 Pragma: Maximum Output File Line Length
	3.15 Pragma: Typesetter
	3.16 Freestanding Typesetter Directives
	3.17 New Page Directives
	3.18 Table of Contents
	3.19 Vertical Skip
	3.20 Title
	3.21 Scanner/Parser Interface

	4 Parser
	4.1 Introduction
	4.2 High Level Structure
	4.3 Free Text
	4.4 Typesetter Directives
	4.5 Section Directive
	4.6 Literal Directive
	4.7 Emphasis Directive
	4.8 Macros
	4.9 Macro Names
	4.10 Formal Parameter Lists
	4.11 Expressions
	4.12 Macro Calls
	4.13 Macro Formal Parameters
	4.14 Macros Are Static

	5 Analyser
	6 Tangle
	7 Weave
	8 FunnelWeb Shell
	8.1 Introduction
	8.2 Return Statuses
	8.3 Command Line Length
	8.4 String Substitution
	8.5 How a Command Line is Processed
	8.6 Options

	9 Shell Commands
	9.1 Introduction
	9.2 Absent
	9.3 Codify
	9.4 Compare
	9.5 Define
	9.6 Diff
	9.7 Diffsummary
	9.8 Diffzero
	9.9 Eneo
	9.10 Execute
	9.11 Exists
	9.12 Fixeols
	9.13 Fw
	9.14 Help
	9.15 Here
	9.16 Quit
	9.17 Set
	9.18 Show
	9.19 Skipto
	9.20 Status
	9.21 Tolerate
	9.22 Trace
	9.23 Write
	9.24 Writeu

	10 Glossary
	11 References
	Search FunnelWeb Documentation
	Copyright and Credits

	LAEHCFANKLHKCJLAFMFMGEEIABODMDNEHD:
	form1:
	x:
	f1: Off
	f2: Y
	f3: Off
	f4: Off
	f5:

	f6:

