
C/C++ Programming Style Guidelines
Table of Contents
Introduction

File Contents

File Format

Choosing Meaningful Names

Comments

Syntax and Language Issues

Conclusion

Appendix A. Review Checklist

References

� De gustibus non est disputandum. �

Introduction
This document contains the guidelines for writing C/C++ code for Dynamic Software Solutions. The
point of a style guide is to greater uniformity in the appearance of source code. The benefit is enhanced
readability and hence maintainability for the code. Wherever possible, we adopt stylistic conventions that
have been proved to contribute positively to readability and/or maintainability.

Before code can be considered for peer review the author must check that it adheres to these guidelines.
This may be considered a prerequisite for the review process. A checklist is provided at the end of this
document to aid in validating the source code's style. Where code fails to adhere to the conventions
prescribed here may be considered a defect during the review process.

If you have not already, please study Code Complete by Steve McConnell. This book provides a detailed
discussion on all things related to building software systems. It also includes references to statistical
studies on many of the stylistic elements that affect program maintainability. Another valuable source of
solid programming practice tips is The Practice of Programming by Brian W. Kernighan and Rob Pike.
Scott Meyers' books, Effective C++ and More Effective C++ should be considered required reading for
any C++ programmer.

And what person would be considered complete without having read The Elements of Style by Strunk and
White?

References

The C++ Programming Language, Bjarne Stroustrup, 0-201-88954-4, Addison-Wesley, 1997.

Code Complete: A Practical Handbook of Software Construction, Code Complete, Steve McConnell,

C/C++ Programming Style Guidelines

http://www.working-software.com/handbook/style/t1.html (1 of 2) [10/1/2000 7:06:01 PM]

1-55615-484-4, Microsoft Press, 1993.

Effective C++: 50 Specific Ways to Improve Your Programs and Designs, Effective C++, Scott Meyers,
0-201-92488-9, Addison-Wesley, 1998.

The Elements of Style, William Strunk, Jr. and E. B. White, 0-02-418200-1, MacMillan Publishing Co.,
Inc., 1979.

More Effective C++: 35 New Ways to Improve Your Programs and Designs, More Effective C++, Scott
Meyers, 0-201-63371-X, 1996, Addison-Wesley, 1998.

The Practice of Programming, Brian W. Kernighan and Rob Pike, 0-201-61586-X, Addison-Wesley,
1999.

 Next
 File Contents

C/C++ Programming Style Guidelines

http://www.working-software.com/handbook/style/t1.html (2 of 2) [10/1/2000 7:06:01 PM]

C/C++ Programming Style Guidelines
Prev Next

File Contents
Use files to group functionality. Each file should contain only one cohesive set of functions. Avoid
duplicating functionality in separate files. If different files contain similar functions, consider
generalizing the function sufficiently and putting it into its own file so that both function groups can use
the one source. For C++ code, put only one class or closely related set of classes in each file.

Avoid strong coupling between functions and classes implemented in separate files. If two objects are so
strongly coupled that one can only be used in conjunction with the other then they belong in the same
file.

Use header files (.h suffix) to declare public interfaces, use code files (.c, .cc or .cpp suffix) to
define implementations. Typically each cohesive set of functions you write in a single file will have one
accompanying header/interface file pair. Code that uses your implementation will #include the header
file.

Be precise with #include statements. Explicitly include the .h files you require, and only where you
require them. If, for example, your code calls a function defined externally, include that function's
associated .h in your implementation file not in your code's associated .h file. You should only need to
include other files in your .h file if your public function interface or data type definitions require the
definitions contained therein.

Avoid using header files to contain a set of #include directives simply for convenience. This �nesting�
of #include constructs obscures file dependencies from the reader. It also creates a coupling between
modules including the top-level header file. Unless the modules are cohesively coupled functionally, and
each requires all the .h files included in the convenience header, it is preferable to instead include all the
individual .h files everywhere they are required.

Header (Interface) File Content
Header files should contain the following items in the given order.

Copyright statement comment1.

Module abstract comment2.

Revision-string comment3.

Multiple inclusion #ifdef (a.k.a. "include guard")4.

Other preprocessor directives, #include and #define5.

C/C++ #ifdef6.

File Contents

http://www.working-software.com/handbook/style/x43.html (1 of 4) [10/1/2000 7:06:05 PM]

Data type definitions (classes and structures)7.

typedefs8.

Function declarations9.

C/C++ #endif10.

Multiple inclusion #endif11.

Example 1. Standard (C) header file layout

/*
 * Copyright (c) 1999 Fred C. Richards.
 * All rights reserved.
 *
 * Module for computing basic statistical measures on
 * an array of real values.
 *
 * Id
 */

#ifndef STATISTICS_H
#define STATISTICS_H

#include <math.h>
#include <values.h>

#define MAXCOMPLEX { MAXINT, MAXINT }

#ifdef _cplusplus
extern "C" {
#endif

struct complex {
 int r; /* real part */
 int i; /* imaginary part */
};
typedef struct complex Complex;

 ...

/*
 * Compute the average of a given set.
 * Input - array of real values, array length.
 * Output - average, 0 for empty array.
 */

File Contents

http://www.working-software.com/handbook/style/x43.html (2 of 4) [10/1/2000 7:06:05 PM]

float
ave(float* v, unsigned long length);

 ...

#ifdef _cplusplus
}
#endif

#endif /* STATUS_H */

Code Files
C and C++ code files follow a similar structure to the header files. These files should contain the
following information in the given order.

Copyright statement comment1.

Module abstract comment2.

Preprocessor directives, #include and #define3.

Revision-string variable4.

Other module-specific variable definitions5.

Local function interface prototypes6.

Class/function definitions7.

Unlike in the header file, the implementation-file revision string should be stored as a program variable
rather than in a comment. This way ident will be able to identify the source version from the compiled
object file. For C files use:

static const char rcs_id[] __attribute__ ((unused)) =
"Id";

The __attribute__ modifier is a GNU C feature that keeps the compiler from complaining about the
unused variable. This may be omitted for non-GNU projects. For C++ files, use the following form for
the revision string:

namespace { const char rcs_id[] = "Id"; }

Precede each function or class method implementation with a form-feed character (Ctrl-L) so that when
printed the function starts at the start of a new page.

File Contents

http://www.working-software.com/handbook/style/x43.html (3 of 4) [10/1/2000 7:06:05 PM]

Example 2. Standard (C++) implementation/code file

//
// Copyright (c) 1999 Fred C. Richards.
// All rights reserved.
//
// Module for computing basic statistical measures on
// an array of real values.
//

#include "Class.h"
#include <string>

namespace {
 const char rcs_id[] = "Id";
}

// Utility for prompting user for input.
string
get_user_response();

^L
Class::Class(const int len)
{
 private_array_ = new[len];
}

Class::~Class()
{
 delete private_array_;
}

^L
 ...

Prev Home Next
C/C++ Programming Style
Guidelines

 File Format

File Contents

http://www.working-software.com/handbook/style/x43.html (4 of 4) [10/1/2000 7:06:05 PM]

C/C++ Programming Style Guidelines
Prev Next

File Format
The formatting style presented here is essentially that used by Stroustrup in The C++ Programming
Language. If you use Emacs you can make this your default editing mode by adding the following to
your .emacs file:

(defun my-c-mode-common-hook ()
 (c-set-style "stroustrup"))

(add-hook 'c-mode-common-hook 'my-c-mode-common-hook)

Format your code so that the spatial structure illustrates the logical structure. Use blank lines to help
separate different ideas, use indentation to show logical relationships, and use spaces to separate
functionality. Each block of code should do exactly one thing.

Start all function definitions and declarations in column zero. Put the return value type, the function
interface signature (name and argument list), and the function body open bracket each on a separate line.
For functions that are more than a few lines long, put the function name after the closing bracket in a
comment.

Example 3. Formatting function declarations and definitions

void
debug(const string& message);

int
Class::method(const int x, const string& str)
{
 .
 .
 .

} // method

Use a single space to separate all operators from their operands. The exceptions to this rule are the �->�,
�.�, �()� and �[]� operators. Leave no space between these operators and their operands. When breaking
operations across lines, put the operator at the end of the broken line rather than at the start of the
continuation line.

File Format

http://www.working-software.com/handbook/style/x134.html (1 of 3) [10/1/2000 7:06:07 PM]

Use four spaces for each level of indentation. Avoid making lines longer than 80 characters. When
breaking lines, use the natural logical breaks to determine where the newline goes. Indent the
continuation line to illustrate its logical relationship to the rest of the code in the line. For functions, for
example, this means aligning arguments with the opening parenthesis of the argument list.

Example 4. Breaking statements across multiple lines

new_shape = affine_transform(coords, translation,
 rotation);

if (((new_shape.x > left_border) &&
 (new_shape.x < right_border)) &&
 ((new_shape.y > bottom_border) &&
 (new_shape.y < top_border)))
{
 draw(new_shape);
}

Use a pure-block, fully bracketed style for blocks of code. This means put brackets around all conditional
code blocks, even one-line blocks, and put the opening bracket at the end of the line with the opening
statement. The exception to this rule is for conditions that are broken across multiple lines. In this case
put the open bracket on a line by itself aligned with the start of the opening statement (as shown above).

Example 5. Fully bracketed, pure block style

if (value < max) {
 if (value != 0) {
 func(value);
 }
} else {
 error("The value is too big.");
}

Although the brackets may seem tedious for one-line blocks, they greatly reduce the probability of errors
being introduced when the block is expanded later in the code's life.

Unique to C++
Start public, protected, private, and friend labels in column zero of class declarations. Use
explicit public labels for all struct public fields and use explicit private labels for all private
class members.

The members of a class should be declared in the following order. Declare all public data members and
type definitions first. Declare private or protected data members or type definitions used in function

File Format

http://www.working-software.com/handbook/style/x134.html (2 of 3) [10/1/2000 7:06:07 PM]

member initialization lists or inline implementations next. Declare all public member functions next,
starting with the constructors and destructor. Declare all remaining private or protected data members
and type definitions next. Declare all private or protected function members next. Declare all friends last.

Put simple inline function definitions on the same line as their declaration. For inline functions spanning
multiple lines, use a pure-block style with four-space indentation. In general, avoid putting complex
function implementations .h files.

Example 6. Class declaration format

class Type : public Parent {
private:
 int x_;
 int y_;
public:
 Type();
 Type(int x) : x_(x) { }
 ~Type();

 int get_x() const { return x_; }
 void set_x(const int new_x) { x_ = new_x; }
 ...
 void display() {
 ...
 }
}

Prev Home Next
File Contents Choosing Meaningful Names

File Format

http://www.working-software.com/handbook/style/x134.html (3 of 3) [10/1/2000 7:06:07 PM]

C/C++ Programming Style Guidelines
Prev Next

Choosing Meaningful Names

Variable Names
The name formatting conventions described here are essentially the GNU coding standards. These are
available online using info.

Use lower case for all variable names. For multi-word names, use an underscore as the separator. Use all
capitals for the names of constants (i.e. variables declared const and enumerated types). Use an
underscore as a word separator.

Choose variable names carefully. While studies show that the choice of variable names has a strong
influence on the time required to debug code, there are unfortunately no clear and fixed rules for how to
choose good names. Review Chapter 9 of Code Complete periodically. In the mean time, here are some
general guidelines to follow:

Be consistent! The most important thing is to establish a clear, easily recognizable pattern to your
code so that others will be able to understand your implementation and intent as quickly and
reliably as possible.

●

Use similar names for similar data types, dissimilar names for dissimilar types.●

Avoid names that are homophones: e.g., foo, fu, phoo, etc. Also, don't rely on capitalization to
distinguish between variables.

●

Use names that say what the variable represents rather than how it is used (i.e. use nouns for
variable names); use terminology from the application domain and avoid computer jargon that
reflects programming details.

●

Avoid generic names such as tmp, buf, reg.●

Avoid intentionally misspelled words such as lo or lite.●

In general, short names are acceptable for variables that serve a short-lived purpose or that have a
common usage in C/C++ (e.g., index variables called i, j, k, etc.). Being concise can contribute to the
readability of code. However, for variables that serve a unique and important purpose, or variables that
persist over a significant region of your code, use descriptive and complete names. Studies have shown
that minimal debugging time correlates with average variable name lengths of 10-16 characters.

Choosing Meaningful Names

http://www.working-software.com/handbook/style/x179.html (1 of 4) [10/1/2000 7:06:11 PM]

Function Names
Use lower-case letters for public function names. Use an underscore as a word separator.

For functions that return no values (i.e. return type void), use strong verbs that indicate the function's
purpose. Typically you will want to include the object of the verb in the name. For example,

void
remove_dc_offset(short *signal, const unsigned long length);

void
set_output_gain(const float gain);

Because functions tend to serve a more complex purpose than variables, longer names are more
acceptable.

If a function returns a value it is sometimes better to use a name that indicates the meaning of the value
returned. For instance,

/*
 * Compute the DC offset of the given signal.
 */
float
dc_offset(const short * const signal,
 const unsigned long length);

/*
 * Poll the D/A and return the current gain setting.
 */
float
gain(void);

In general, be consistent and be informative. Choose names that make your code easy to read and
understand.

Classes, Structures and Type Definitions
The name formatting conventions described here are essentially those used by Stroustrup in his book on
C++.

Capitalize the first letter of the name of each data type that you define. This includes all struct,
class, typedef and enum types. Use an underscore as a word separator, just as for C variables and
function names.

Choosing Meaningful Names

http://www.working-software.com/handbook/style/x179.html (2 of 4) [10/1/2000 7:06:11 PM]

For class instance variables, start all names with lower-case letters. Again, use an underscore as a word
separator. Apply the same rules to public and protected members, both variables and functions.
Add a trailing underscore to private member names.

Example 7. Capitalization of user-defined types

/* Straight C */

struct complex {
 int r; /* real */
 int i; /* imaginary */
};
typedef struct complex Complex;

// C++ interface example

class Canvas {
public:
 enum Pen_style {
 NONE = 0,
 PENCIL,
 BRUSH,
 BUCKET
 };

 Canvas();
 ~Canvas();

 void set_pen_style(Pen_style p);
 ...
private:
 int cached_x_; // to avoid recomputing coordinates
 int cached_y_;
};

// C++ usage example

Canvas sketch_pad;

sketch_pad.set_pen_style(Canvas::BRUSH);

When working with C++ classes and objects be mindful of redundant name elements. Remember that
class members are identified by their class instance name. Thus you do not have to repeat information
about the class in the member element's names.

Choosing Meaningful Names

http://www.working-software.com/handbook/style/x179.html (3 of 4) [10/1/2000 7:06:11 PM]

Example 8. Poor variable names

// Notice how redundant "stack" becomes.

template <Type>
class Stack {
public:
 int stack_size;
 add_item_to_stack(Type item);
 ...
};

Stack my_stack;

my_stack.add_item_to_stack(4);
int tmp = my_stack.stack_size;

Prev Home Next
File Format Comments

Choosing Meaningful Names

http://www.working-software.com/handbook/style/x179.html (4 of 4) [10/1/2000 7:06:11 PM]

C/C++ Programming Style Guidelines
Prev Next

Comments
In general, well written code should document itself. Clear, concise variable and function names,
consistent formatting and spatial structure, and clean syntactical structure all contribute to readable code.
Occasionally, however, complex logic will benefit from explicit description. Be careful not to use
comments to compensate for poorly written code. If you find that your code requires many comments or
is often difficult to describe, perhaps you should be rewriting the code to make it simpler and clearer.

Style
For straight C code, use /* ... */ style comments. For C++ code, use // ... style comments.
Adhering to these conventions, you can quickly estimate the number of lines of comments in your code
with the following commands:

 % grep "^[\t]** "
 % grep "^[\t]*\/\/"

Too few or too many comments is an indicator of code that is likely to be difficult to maintain.

Avoid the use of end-line comments except for variable declarations and for marking #if/#endif
statements. Make comments be the only thing on a line. For longer comments describing more complex
logic, use a block style to offset them from the code better. Use block-style comments to describe
functions. Use bold comments to delimit major sections of your code file. Preface all bold comments and
block comments that introduce functions with a form-feed character so that they appear at the start of the
printed page. The following example shows the various comment types in the C style.

Example 9. C comment types

^L
/*
 * **
 * Bold comment.
 * **
 */

/*
 * Block comment.
 */

/* Short (single-line) comment. */

Comments

http://www.working-software.com/handbook/style/x248.html (1 of 4) [10/1/2000 7:06:14 PM]

int i; /* end-line comment */

Content
End-line comments are acceptable for describing variable declarations. Use a comment to describe any
variable whose purpose is not obvious from its name.

Use comments to document your intent. Do not describe how your code works, that should be obvious
from the implementation. Instead describe why your code does what it does. Avoid explaining especially
tricky code in comments. Instead, rewrite the code to make it intrinsically more obvious. Use complete
sentences with proper spelling and punctuation in all comments.

Write your comments before and as you write your code, not after. If you start by writing comments you
give yourself a low-level design for the implementation. When you are finished testing your code, go
back and review all comments to make sure they are still accurate.

Comment things that have wide impact. If a function makes assumptions about the condition of variable
on input, document that. If a required speed optimization makes the code difficult to read, explain the
need for the code in a comment. If your code uses or changes any global variables, comment that.

Use bold comments to delimit major sections in your code file. You may, for instance, implement a
number of private utility functions. Use a bold comment to mark the start of that code. Preface each
function with a block comment describing the function's purpose, the meaning of any input variables, and
the significance of any return value(s). There is no need to include the function name since it
immediately follows the comment.

Example 10. Commenting functions and function groups

^L
/*
 * **
 * Statistics utilities used to
 * optimize performance on the fly.
 * **
 */

/*
 * Compute the standard deviation or "variance"
 * for a set.
 *
 * Input: v - set of values and set size.
 * len - size of input set.
 * Output: Dev = Expect (x - x_ave)^2
 * 0 for the empty set

Comments

http://www.working-software.com/handbook/style/x248.html (2 of 4) [10/1/2000 7:06:14 PM]

 */
static float
std_dev(const float *v, const unsigned long len)
{
 ...
}

Use an end-line comment to mark the end of particularly long blocks of code. This applies to functions
and conditional code. Include the control condition that terminates control for if/else branches and
for/while/do loops.

Use an end-line comment also to identify which #if or #ifdef statement a particular #endif
statement closes. Include the condition in the comment for blocks of code spanning more than a few
lines. When using #else conditions, mark both the #else and the #endif statements with the
negated condition (i.e. preface it with �not�).

Example 11. Commenting long code blocks

#ifdef DEBUG
 .
 .
 .
#else // not DEBUG
void
function()
{

 if (position != END)

 .
 .
 .

 } // position != END

 .
 .
 .

} // function()

#endif // not DEBUG

Prev Home Next

Comments

http://www.working-software.com/handbook/style/x248.html (3 of 4) [10/1/2000 7:06:14 PM]

C/C++ Programming Style Guidelines
Prev Next

Syntax and Language Issues
The following sections outline some general practices of good defensive programming. Always assume
that others will have to read and maintain your code, and try to assist them as you write. Also, assume
that errors and defects are inevitable, and write so as to isolate them and limit their effect as quickly as
possible. This latter practices is sometimes referred to as "fire-walling" code. Be liberal in checking the
validity of input arguments within functions, and always check values returned by functions you call.

General
Avoid putting multiple instructions on the same line. Each line should do exactly one thing. This is
applies in particular to control statements for branch and loop structures. Consider the following:

/* Bad practice! */

if (!eof && ((count = get_more()) > min_required) {
 ...
}

This should be rewritten so that the act of getting more data is separate from the task of checking that
more data remains to be processed:

/* Safer version */

if (!eof) {
 count = get_more();
 if (count > min_required) {
 ...
 }
}

Avoid the use of side-effects. The following innocuous line may actually produce different depending on
which compiler is used:

a[i] = i++; /* a[0] or a[1] == 1 ? */

Again, each line should contain a single statement, and each statement should do exactly one thing.

Syntax and Language Issues

http://www.working-software.com/handbook/style/x296.html (1 of 3) [10/1/2000 7:06:21 PM]

Avoid type casts and never cast pointers to void*. One of the strengths of C++ is its strong typing and
ability to support arbitrary user types. If you feel the need to cast data to other types in C++, perhaps you
should be considering defining an inheritance relationship or using templates.

Do not define any types from pointers (e.g., typedef char* String).

Avoid using preprocessor constants (i.e. #defines). Instead declare variables of the appropriate C/C++
type as const and use them. For related sets of integer constants, define an enum. Both of these
techniques let the compiler perform type checking where the preprocessor #defines would not.

Limit variable scope as much as possible. In C++, use brackets to group functionality and temporary
variables. Declare a variable just prior to using it and destroy it when you are finished with it.

Use parentheses to group logic in branch and loop control structures. Most people are not intimately
familiar with operator precedence, and parentheses can make logic operations much easier for people to
parse and understand. Without the additional parentheses it is not obvious that the first case below differs
from the other three (which are equivalent) for only one of the eight combinations of the booleans x, y
and z:

Example 12. One of these things is not like the other

(x || y && y || z)

(x && y || z)
((x && y) || z)
((x || z) && (y || z))

Structured Programming
Keep the structure of your code as clear as possible. Do not call exit() from library functions. Instead
return with an appropriate error condition. Call return only once for each function longer than a
few lines. Avoid using break and continue to escape loop and branch code. Consider instead adding
or changing the exit conditions of the the control statement. Do not use goto.

Prefer using if/else/else/... over the switch/case/case/... with non-trivial branch
conditions. For both constructs use default conditions only to detect legitimate defaults, or to generate an
error condition when there is no default behavior. Using a switch/case block with overlapping
conditions only when the cases have identical code so that fall-through is obvious.

Prefer using while() { ... } instead of do { ... } while();. It is easier for humans to
parse the control structure if they know the exit condition upon entering the block of code. The do {
... } while(); form buries the exit criterion at the end of the loop.

Avoid overly long control structures. If you find loop or branch constructs spanning several printed pages
or screens, consider rewriting the structure or creating a new function. At the very least place a comment
at the end of the structure to indicate the exit conditions.

Syntax and Language Issues

http://www.working-software.com/handbook/style/x296.html (2 of 3) [10/1/2000 7:06:21 PM]

Avoid deeply nested code. Humans have a hard time keeping track of more than three or four things at a
time. Try to avoid code structure that requires more than three or four levels of indentation as a general
rule. Again, consider creating a new function if you have too many embedded levels of logic in your
code.

Avoid the use of global variables. They make your code hard to support in a multi-threaded environment.
If you do use global variables, understand how they affect the ability of your module to be reentrant.

Functions and Error Checking
Do not use preprocessor function macros. There are too many possible problems associated with them
and modern computer speeds and compiler optimizations obviate any benefit they once may have had.
Define a function instead.

Write function declarations/prototypes for all functions and put them either in the module .h file for
public functions or at the start of the .c file for private, internal functions. The function declaration list
should read like a table of contents for your code.

Make explicit all assumptions about the condition of input data to your routines. Use assertions to test for
programming errors, use exceptions (C++) or return values (C) to report error conditions detected in
normal use. Do not put any implementation logic in your assertions since often they will not remain in
the deployed code (especially library functions). When a library function must report both a computed
value and a distinct error value, pass the computed value through a variable and return the error value.

Check the return values of all library function calls. This is especially important for functions providing
access to system resources (e.g., malloc(), fopen(), etc.).

Generate informative error messages. Write messages that are understandable to the user. Be complete
and concise and avoid using computer jargon. Suggest possible causes of the error condition.

Prev Home Next
Comments Conclusion

Syntax and Language Issues

http://www.working-software.com/handbook/style/x296.html (3 of 3) [10/1/2000 7:06:21 PM]

C/C++ Programming Style Guidelines
Prev Next

Conclusion
The guidelines presented here should be followed when writing all new code. When working with
someone else's code it is more important that you adhere to the conventions used there. Only if the
coding style is ad hoc should you impose your own (or these) conventions.

A checklist is included at the end of this document. It covers most of the items discussed. Apply the
checklist to your code prior to submitting it for peer review. Any unaddressed issue is considered a
coding defect during the review process.

Obviously a style guide cannot dictate good programming practices. It can only ward off some of the
more flagrant problems. With luck, a good style guide can encourage better programming habits. To that
end, all C++ programmers should read Effective C++, by Scott Meyers. It covers far more concerns and
goes into far greater detail on C++ than is appropriate here. It is critical for C++ programmers to
understand these issues when writing new code.

Prev Home Next
Syntax and Language Issues Review Checklist

Conclusion

http://www.working-software.com/handbook/style/x358.html [10/1/2000 7:06:23 PM]

C/C++ Programming Style Guidelines
Prev

Appendix A. Review Checklist
File contents.

Do all files contain:

a copyright statement?❍

an abstract/synopsis comment?❍

a revision string?❍

●

Do all header files contain a multiple include #ifdef?●

Are all necessary #includes made explicitly (i.e. the code does not rely on nested
#includes)?

●

Are all public functions declared in the module's .h file?●

Do function declarations/prototypes exist for all functions?●

Does each code file contain exactly one cohesive set of classes or functions?●

Are functions from different files sufficiently uncoupled from one another?●

File format.

Do all function declarations and definitions begin in column zero? Are the return type, function
name and open bracket each on a separate line, each beginning in column zero?

●

Do functions longer than a typical screen/page have comments with their name at the close
bracket?

●

Is four-space indentation used throughout?●

Are all control structures in a pure-block style and fully bracketed?●

Is there a single space surrounding all operators, except ., ->, [] and ()?●

Do the C++ keywords public, private, protected, and friend all start in column zero?●

Are C++ class internals declared in the proper order?

public data and types1.

private or protected data and types used in the class declaration2.

public member functions, starting with constructors and the destructor3.

●

Review Checklist

http://www.working-software.com/handbook/style/a364.html (1 of 3) [10/1/2000 7:06:27 PM]

other private or protected data members4.

other private or protected functions5.

friends6.

Variable and function names.

Are all C variable and function names lower case, with an underscore as a word separator?●

Are all C++ variable and function names lower case, with capitalization rather than an underscore
indicating word boundaries?

●

Do all private class member names end with an underscore?●

Do all programmer-defined types/classes start with a capital letter?●

Are all constants and enumerated types all capital letters?●

Are all variable names sufficiently informative and meaningful given their scope?●

Do variable names match the problem domain?●

Are variable names nouns?●

Are function names strong verbs (or nouns for functions whose sole purpose is to compute a
value)?

●

Comments.

Are bold comments used to divide code into major sections? Are block comments used to mark
significant points? Are end-line comments used only for variable declarations and to mark long
blocks of code?

●

Does C++ code use // ... style comments (not /* ... */)?●

Do all comments contain complete sentences, with proper punctuation and spelling?●

Do comments describe intent rather than implementation details?●

Is all subtle code sufficiently explained in comments?●

Do all but the simplest functions have comments describing what they do, what data they operate
on and any impact they have on the rest of the application?

●

Language usage.

General

Does each line of code do exactly one thing?❍

Are all constants declared as const and not as #defines?❍

Does the code avoid casting variables and return values to different data types? Are there no❍

●

Review Checklist

http://www.working-software.com/handbook/style/a364.html (2 of 3) [10/1/2000 7:06:27 PM]

casts to void*?

Are no typedefs made from pointers (e.g., typedef char* Str?)❍

Are there no preprocessor macros defined?❍

Are parentheses used to group items in all but the simplest logic constructs?❍

Are all private class members explicitly declared such?❍

Program structure

Does each function call return from only one place?❍

Is exit() called only from within main(), and only once?❍

Do final else blocks of if/else branches and default blocks of switch/case
branches handle default conditions or error conditions only?

❍

Do all overlapping switch/case conditions (i.e. fall-throughs) use identical code?❍

Has the use of global variables been avoided?❍

Do most control structures span no more than a page or two? Is the close bracket of all
longer controls structures commented with the exit criteria for the block of code?

❍

Does nested conditional code go no more than three or four levels?❍

Has the use of structure-breaking directives such as goto, continue and break been
avoided?

❍

●

Functions and error-checking

Are functions used always instead of preprocessor macros?❍

Are all assumptions about the condition of input data tested explicitly with assert()?❍

Will the code perform the same way if assertions are removed?❍

Do library functions return error values or throw exceptions (C++) wherever possible?❍

Are all function return values tested or exceptions caught?❍

Are all error messages informative to a typical user? Are messages complete sentences, with
proper punctuation and spelling?

❍

●

Prev Home
Conclusion

Review Checklist

http://www.working-software.com/handbook/style/a364.html (3 of 3) [10/1/2000 7:06:27 PM]

	working-software.com
	C/C++ Programming Style Guidelines
	File Contents
	File Format
	Choosing Meaningful Names
	Comments
	Syntax and Language Issues
	Conclusion
	Review Checklist

