The Document Package

A Simplified Approach to Literate Programming

Michael L. Hall

November 29, 2000

Abstract

The Document package is used to process documentation that is imbedded in the comments of a source
code file. Any source code language may be used, if the proper values for comment characters have been
set. Any formatting language may be used as well. Currently, options for Fortran, M4, C++ (or C),
KTEX, Java, Prolog and shell scripts (perl, sh, csh, awk, Tcl) as the source code language have been
implemented.

User’s Note: the -docstyle keyword which enabled compatibility with the doc routine has been de-
selected. Document no longer includes this capability.

Laziness: The quality that makes you go to great effort to reduce overall energy expenditure. It makes you
write labor-saving programs that other people will find useful, and document what you wrote so you
don’t have to answer so many questions about it. Hence, the first great virtue of a programmer. Also,
hence this book [program -MLH].

Impatience: The anger you feel when the computer is being lazy. This makes you write programs that don’t
just react to your needs, but actually anticipate them. Or at least that pretend to. Hence, the second
great virtue of a programmer.

Hubris: Excessive pride, the sort of thing that Zeus zaps you for. Also the quality that makes you write
(and maintain) programs that other people won’t want to say bad things about. Hence, the third great
virtue of a programmer.

From the glossary of Programming perl, by Larry Wall and Randall L. Schwartz.

Contents

1 Author, Date and Version Information

2 Quick Reference

3 Usage
3.1 Generating Documentation for Document
3.2 Software Requirementso
3.3 Running the Script L
3.4 File Format e e e
3.5 Running Document on Unmodified Files 0.
3.6 Self-Documentation

4 Comparisons to Other Literate Programming Packages
4.1 Comparison with WEB 000

4.2 Comparison with doc e

5 Coding Details

Index

11

12

14

14

14

16

23

1 Author, Date and Version Information

Filename: Document
Author: Michael L. Hall
Los Alamos National Laboratory
P.O. Box 1663, MS-D409
Los Alamos, NM 87545
Email: hall@lanl.gov

Date: 11/29/00, 17:01:47
Version: 12.0

Contributions: ~While the entire code (including any bugs) is solely the responsibility of the author,
the following people were involved in discussions that proved very helpful: Mark
Gray, Chuck Henkel and John Turner.

2 Quick Reference

Document Keywords for ~generic Option

Keyword Meaning

Begin Doc [filename] Start Documentation Mode and output to filename if specified.

End_Doc Stop Documentation Mode.

Begin Verbatim Start Verbatim Mode (only during Documentation Mode) to leave
comment characters as they appear in the input.

End_Verbatim Stop Verbatim Mode.

Begin_Self Documentation Start Self Documentation Mode, which lists the commands neces-
sary to produce the documentation for this file. This may or may
not appear within the Documentation Mode.

End_Self Documentation Stop Self Documentation Mode.
Begin_Self Test Start Self Test Mode, a synonym for the Self Documentation Mode.
End_Self Test Stop Self Test Mode, a synonym for Self Documentation Mode.

Document keywords must appear on a comment line by themselves to take effect. Lines containing Document
keywords are never printed.

Common syntax for including source code (with BTEX and Fortran):

Begin_Doc
\begin{verbatim}
Begin_Verbatim

Source Code to be quoted verbatim.

o o oo o0

doi=1, 20
i=1i+1
end do
c End_Verbatim
¢ \end{verbatim}
¢ End_ Doc

The perl source code for the Document package contains examples of most of the things that can be done with
Document, KTEX and KTEX2HTML, such as:

e Self-Documentation scripts

e Multiple output files and Document options
e Included code

e Indexing

e Items included in only BTEX or HTML

e Hyper references

e HTML lists and Exterior HTML links

e Verbatim environments from hell

3 Usage

3.1 Generating Documentation for Document

To generate the documentation for this routine, you can use Document’s self-documentation option to run an
internally-defined script:

% Document -self Document
Or, to generate the documentation manually, run Document on itself: !

Document Document
cd Document_doc
latex Document
makeindex Document
latex Document

% latex Document

I T

To view the dvi file, continue with:

% xdvi Document_doc/Document &

If PostScript output is desired, then continue with:

% dvips Document
% lpr Document.ps

If HTML documentation is desired, then continue with:

cp Document.dvi

cp ../.latex2html-init

latex2html -nomath -html_version 4.0,math Document

mv ../Document.dvi

cp ../Document

cp -r /opt/latex2html/icons

% rm Document.tar.gz *.aux *.idx *.ilg *.ind *.log *.toc
%hocd ..

% gtar cvzhf Document.tar.gz Document_doc icons

% mv Document.tar.gz Document_doc

and load the URL “file://localhost/<current_directory>/Document_doc/index.html” into your fa-
vorite web browser.

1To make the documentation look exactly like the official version, you will need the official .latex2html-init file.

3.2 Software Requirements

To run Document, you must have perl installed. You may also need a compiler if you want to process the
source code, and a formatter if you want to process the Document output (documentation) file.

To generate the documentation for Document in PostScript, you will need ¥TEX 2¢, makeindex and dvips. To
generate the documentation in HTML you will need ITEX 2¢, makeindex, gnu tar, and IXTEX2HTML, which
requires ghostscript, netpbm, and perl, version 5.

The HTML version will look better if N TEX2HTML v.98.2beta8, (or later) is used.

3.3 Running the Script

Once the source code with the documentation imbedded in the comments has been produced, it can be
processed by Document in any of the following ways:

% Document [options and files] > outfile
% cat filel [file2, etc.] | Document [options] > outfile

The options and files may be in any order on the command line. The files are processed in the command line
order. The available options are:

Source Language and Formatting Language Options

Option Language Meaning

—c++ Source Code Use comment characters and other commands suitable for processing
a C++ or C source code file.

-generic Formatting Use verbatim definitions and other commands suitable for processing
a file with generically formatted comments. This is the default (and
recommended) setting. It is required if comment characters are to be
stripped off of verbatim environments.

-fortran Source Code Use comment characters and other commands suitable for processing
a Fortran source code file.

-java Source Code Use comment characters and other commands suitable for processing
a Java source code file.

-latex Source Code Use comment characters and other commands suitable for processing
a ITEX source code file.

-m4 Source Code Use comment characters and other commands suitable for processing

an m4 source code file.

-prolog Source Code Use comment characters and other commands suitable for processing
a Prolog source code file.

-shell Source Code Use comment characters and other commands suitable for processing
a shell script (csh, sh, awk, perl).

General Options

Option

Meaning

-blanks=number

-dir=dirname
-headeronly

-self

-selftest
-silent

-verbatim

The number of blanks to match and remove after comment keywords. The default
is one.

Output any named files to the specified directory.

Ignore any Document keywords in the file and output the file header only, verbatim,
to standard out. The file header consists of all lines that are comment lines at
the beginning of a file — the first non-commented line marks the end. If there
are files named .doc_header and .doc_footer located in the current directory, they
will be prepended and appended to the output. See the Unmodified Files section
(section 3.5) for more information.

Use the self-documentation mode which extracts a shell script from the file and runs
it. Note that a source code language must still be specified (or defaulted) so that
the proper comment characters are used.

Use the self-test mode which extracts a shell script from the file and runs it. This
is a synonym for the -self flag.

Do not output anything to STDERR. This includes informational output. Also, do
not query the user for verification before executing scripts.

Ignore any Document keywords in the file and output the entire file, verbatim, to
standard out. If there are files named .doc_header and .doc_footer located in the
current directory, they will be prepended and appended to the output. See the
Unmodified Files section (section 3.5) for more information.

The Document package can be used with any formatting language, and can be easily extended to other source

code languages.

If an option is specified for the source code language on the command line, then it applies to all of the files
being processed. If no source code language option is given on the command line, then the first twenty lines

of each file are checked for a line containing:

Document options: [options]

which will specify options for that file only. If the source code language is still undefined, then the directory
that contains the input file is searched for a file named .doc_options, which contains a single line with only
the desired options. If the source code language is still undefined, the suffix of the file type will be checked

for matches with defined suffix types for each source code language:

Source Code Language File Suffixes
C++ .C, .cc, .c, .H, .hh, .Cpp, .cpp, -hxx, .cxx
Fortran F, £, .h, .F90, .FCM, .inc, .fm4
Java Jjava
ETRX .tex
M4 .m4, .gm4
Prolog .ari, .pro, .nl
Shell .awk, .pl, .perl, .sed, .tcl, no suffix

If the source code language is still undefined, then it will default to ~-fortran.

3.4 File Format

The idea behind the Document package is that all documentation keywords are placed in the comments
of the source code document being processed. The source code can then be processed by the compiler or
interpreter without additional changes. The Document keywords instruct the Document package how to extract
documentation from the source code file without affecting the operation of the source code file itself.

Document keywords are different for each command line option that is specified. In this description, the
Document keywords for the default options (-generic and -fortran) will be used, with the name of the perl
list variable for the specific keyword in parantheses. For the values of the keywords for other options, consult
the Coding Details section (see section 5).

To start the documentation process, enter the Begin Doc (start_documentation) keyword, on a line by
itself, in the comments of the file:

¢ This line of text will not be in the documentation file.
¢ Begin_Doc
¢ This line of text will be entered into the documentation file.

To terminate the documentation process, enter the End Doc (end_documentation) keyword, on a line by
itself, in the comments of the file:

¢ This line of text will be entered into the documentation file.
¢ End_Doc
¢ This line of text will not be in the documentation file.

The format given above will send the documentation output to standard output. An optional filename may
be appended to the Begin Doc keyword to redirect output. This filename will be valid only for the current
documentation block. If the same filename is specified more than once, the first specification will open the file
and subsequent specifications will append to the file. This feature can be used to change the order of input
for the documentation, as is shown in this example:

Begin_Doc main.tex

% Note that the order of files a.tex and b.tex has been switched.
\input{b}

\input{a}

End_Doc

Begin_Doc a.tex
This line is in file a.tex.
End_Doc

Begin_Doc b.tex
This line is in file b.tex.
End_Doc

Begin_Doc a.tex
This line is appended to file a.tex.
End_Doc

O 0O 0O 0 0000000000000

The default documentation mode removes the comment characters from the documentation before printing.
For Fortran, the comment character keywords (comment_characters) are either a “c” or whitespace and an
exclamation point (“!”) at the beginning of the line. In-line comments with coding followed by an exclamation

point and a comment are not modified. For example, in the default documentation mode these lines:

¢ Begin_Doc
c
c Comment.
c
! Bang-style comment.
doi=1, 10
a(i) = i**2 ! In-line comment
end do
c End_Doc

would appear like this in the output:

Comment .

Bang-style comment.
doi=1, 10
a(i) = i*»*2 ! In-line comment
end do

To stop the removal of comment character keywords from the output (i.e. to leave lines unmodified), surround
the text with the Begin Verbatim (start_verbatim) keyword, on a line by itself, and the End _Verbatim
(end_verbatim) keyword, on a line by itself, in the comments of the file:

Begin_Doc
These lines will have
their comment characters removed

\begin{verbatim}
Begin_Verbatim

But these lines won’t.
End_Verbatim

\end{verbatim}
End _Doc

O o0 o0 o0 o0o0o0o0o0o0o0o0

which will appear as follows in the output:

These lines will have
their comment characters removed

\begin{verbatim}
c

10

c But these lines won’t.
c
\end{verbatim}

Notice the use of the IXTEX verbatim environment on the outside of the Document verbatim keywords. This
is a common construct for situations where quoting code and preserving the comments is desired.

Two last Document keywords are always_print and never print. If any line is found with either of these
keywords (even if there are other things on the line), the specified action will be taken. The never_print
keyword takes precedence, and is primarily used for the self-documentation option (see the Self-Documentation
section, section 3.6). For always_print, comments will be stripped off unless currently inside a verbatim
environment. always_print is not used with either the -generic or -fortran options.

3.5 Running Document on Unmodified Files

To reap the full benefits of using the Document package, one must make modifications to the source code files.
However, there are situations where it is desireable to have some form of rudimentary documentation for a
package that for some reason has unmodified source. For instance, it could be source that is not maintained
by the person doing the documentation, or it could be the first attempt at using Document before making
specialized modifications to the source.

Document provides two options that are useful in this situation, -verbatim and ~headeronly . The -verbatim
option outputs the entire contents of the file with no changes to standard out. The -headeronly option
outputs only the header of the file, which is defined as every line until a non-comment line is reached.
Additionally, both options will prepend and append the files .doc_header and .doc_footer if they exist. The
.doc_header and .doc_footer files can contain the following strings which will have the correct values substituted
in:

String Substitution

doc_filename The complete filename, without the directory.

doc_filename_base The filename without any suffix, without the directory.

doc_dirname The immediate directory name (not the full directory name, but only the directory

name one level up from the input file).

The header and footer files may be configured for use with any formatting language. A common choice for
the header and footer files for use with BTEX and KTEX2HTML is:

.doc_header:

\subsection{doc_filename_base \label{doc_filename_basel}}
\index{doc_dirname'!doc_filename}
\begin{verbatim}

.doc_footer:

\end{verbatim}

The desired options for processing the files (for example, the -verbatim or the ~headeronly option) may be
specified in a .doc_options file that is placed in the same directory.

11

3.6 Self-Documentation

The commands used to generate the documentation for a file can be imbedded in the file in a similar manner
to the documentation itself. To activate this feature, use the -self option. For example, the documentation
for document can be generated by typing:

% Document -self -shell Document

The -self option parses the input file and removes comment characters according to the setting of the source
code option. The start_documentation keyword is set to Begin_Self Document, and the end_documentation
keyword is set to End_Self Document. The -self option then removes any initial “%” sign (often used to
indicate shell input), and executes each line in turn.

Here is an example self-documentation entry, in a Fortran code segment:

c Begin_Self Document
% Document -fortran routine.F > routine.tex
% latex routine
End_Self Document

Other code and comments.

% makeindex routine

% latex routine

% latex routine

% dvi routine

% latex2html -dir routinehtml -nomath -html_version 4.0,math routine

c
c

c

c

c

c

¢ Begin_Self Document
c

c

c

c

c

¢ End_Self _Document

which would execute the following commands:

Document -fortran routine.F > routine.tex

latex routine

makeindex routine

latex routine

latex routine

dvi routine

latex2html -dir routinehtml -nomath -html_version 4.0,math routine

The -self option is equivalent to the -selftest option, and the beginning and ending keywords can be
written as Begin Self Test and End Self Test. This usage underscores that the self-documentation (or
self-test) feature is a very powerful feature with many uses — its primary function is simply to couple a script
with some input data so that they can be maintained in sync. The function could be

e processing the documentation in a file according to a script contained in the same file;

e compiling, running, and examining the output of the source code in a file according to a script contained
in the same file; or

12

e writing several input files, running an executable on them, and examining the output of the run, with
all of the input files and the execution script contained in the same file.

13

4 Comparisons to Other Literate Programming Packages

4.1 Comparison with WEB

The Document package is much less complex than WEB and the various WEB-like and WEB-derivative
packages. The entire source and documentation for Document is around 1000 lines, compared to 10,000 lines
for the original WEB. Other differences between Document and the sea of WEB style programs are: 2

Input File: Most WEB packages start from an input file that is not a valid source code file. A program
called weave takes the input file and makes a formatting language file, while a program called tangle
takes the input file and makes a source code file. The Document package takes an input file that is
already a valid source code file. The formatting language commands are imbedded in the comments of
the source code, so that no changes need to be made to the file for compilation.

Macros: Most WEB packages allow the user to define macros that stand for chunks of code or documentation,
and that can be used to move code around and alter the flow of the program. The Document package
does not provide this feature, and therefore the source code must be in the order in which it is to be
compiled. There is, however, a mechanism to print out multiple documentation files. When combined
with a formatting language that provides for the inclusion of files, this allows the user to alter the
structure of the documentation to his own needs.

Languages: Many, but not all, of the WEB packages are language-specific (both formatting and source
code). For example, the original WEB package only worked with Pascal and TEX. Document is only
slightly language-specific in that it needs to know something about the syntax (mainly the comment
characters) of the source code language. It can be easily extended to languages that are not already
incorporated.

Indexing: Many WEB packages provide automatic indexing of things like variables and routines. Document
does not do indexing automatically, but it can be done if the formatting language supports it, as is
possible with BTEX and EXTEX2HTML.

For more information on Literate Programming, a good starting point is the Literate Programming FAQ
located at ftp://rtfm.mit.edu/pub/usenet/news.answers/literate-programming-fagq.

4.2 Comparison with doc

In the past, the Document package was able to process source code formatted for the doc routine (written by
Mark Gray), but this capability has been de-selected. This section remains for historical reasons, but will be
deleted eventually.

Even when operating in the “docstyle” option, there might have been slight differences between the output
of the two routines:

Keywords: The Document package requires that keywords be on a line by themselves (after removing com-
ments from the line), except for the always_print keywords. The doc routine does not have this
requirement.

2As a caveat I will first state that I have never used WEB or any of the WEB-like or WEB-derivative packages. I have read
the FAQs and documentation, and looked at sample code to the extent that I have a reasonably good idea of their capabilities.

14

In addition to these differences, there are some other differences between Document and doc:

Self-Documentation: Document allows the commands necessary to process the documentation to be imbed-
ded in the file as well as the documentation itself. This feature can also be used to include commands
which will self-test or run the source code.

Multiple Output Files: Document allows output to multiple files from a single source file. This allows the
user to re-arrange the structure of the documentation to suit his purposes.

Language Options: Document has options which allow the user to specify the source code language.

Extensibility: Document can easily be extended to include new source code languages. The doc routine is
somewhat restricted to a single formatting language, whereas Document is independent of formatting
language.

Philosophy: Document makes a distinction between the keywords (i.e. the language of the Document pack-
age), the source code language, and the formatting language. The doc routine does not make this
distinction, and uses elements of the source code language and the formatting language as keywords.

15

5 Coding Details

Settings.
$, =7 # Set output field separator.
$\ = "\n"; # Set output record separator.

Save STDOUT for later use.
open (SAVESTDOUT, ">&STDOUT") ;
Process command line optioms.

&set_options (@ARGV);

($source) && ($default_source = $source);

($format) && ($default_format $format) ;

($file_verbatim) && ($default_file_verbatim = $file_verbatim);
($header_only) && ($default_header_only = $header_only);

Subroutine to process options.

sub set_options {

foreach (@_) {
/~ (-generic)$/ && ($format = $_);
/”~ (=c\\+\\+|-fortran|-javal|-latex|-m4|-prolog|-shell)$/ && ($source = $_);
/" -self$/ && ($self_doc = true);
/" -selftest$/ && ($self_doc = true) && ($self_test = true);
/"-silent$/ && ($silent = true);
/"-dir=(\S*)$/ && ($directory = $1);
/"-blanks=(\S*)$/ && ($number_of_blanks = $1);
/" -verbatim$/ && ($file_verbatim = true);
/" -headeronly$/ && ($header_only = true);

3

I$silent && !'$self_doc && ($verbose = true);

Sort argument list to put flags in front, then remove them.

QARGV = sort QARGV;
while ($ARGV[0] =~ /~-/) {shift;}

Loop over input files.

foreach $infile (@ARGV) {
open(INFILE, "$infile") || die "Can’t open $infile: $!";

Set default languages and modes from command line options.

$format = O;
$source = 0;
$file_verbatim

=0;
$header_only = 0;

16

($default_format) && ($format = $default_format);

($default_source) && ($source = $default_source);
($default_file_verbatim) && ($file_verbatim = $default_file_verbatim);
($default_header_only) && ($header_only = $default_header_only) ;

Read first lines of file for options if necessary.

if (!$source) {

while ($i < 20) {
$i++;
$_ = <INFILE>;
if (/[dD]ocument\s*[o0]lptions:\s*(.*)$/) {

&set_options(split(/ /,$1));

}

}

seek (INFILE,0,0); # Rewind the file.

Look for .doc_options file for options if necessary.

($doc_options = $ENV{"PWD"}."/".$infile) =~ s|/["/1*$|l;

$doc_options .= "/.doc_options";

if (!$source) {

if (-r $doc_optiomns) {

open(OPTIONS, "$doc_options") || die "Can’t open $doc_options: $!";
$_ = <OPTIONS>;
&set_options(split);
close (OPTIONS) ;

Set source code language by file suffix if necessary.

if (!$source) {

$_ = $infile;
if (/\.(°NI08/) {
$_ = $1;
}
else {
$_ ="
}
/" (Clcclc|HIhh|Cpplcpplhxx|cxx)$/ && ($source = "-c++");
/- (FIf|h|F90|FCM|inc|fm4)$/ && ($source = "-fortran");
/" (java)$/ && ($source = "-java");
/" (tex)$/ && ($source = "-latex");
/" (md|gmd)$/ && ($source = "-md");
/" (arilpro|nl)$/ && ($source = "-prolog");
/~ (awk|pllperllsed|sh|tcl)$/ && ($source = "-shell");
Uncomment next line to make .pl files default to Prolog.
#/°(pl)$/ && ($source = "-prolog");
($_ eq "") && ($source = "-shell");

Set last resort default languages if necessary.

17

('$source) && ($sour
('$format) && ($form

Lists of reserved
#
-generic : use

if ($format eq ’-gen
@start_verbatim
Q@end_verbatim

}

Lists of reserved
#

—-c++ : use
-fortran : use
-java : use
-latex : use
-m4 . use
-prolog . use
-shell . use

if ($source eq ’-c++

ce = "-fortran");
at = "-generic");

words related to the formatter.
generic commands (default).

eric’) {
= (’Begin_Verbatim’) ;
(’End_Verbatim’) ;

words related to the source code language.

C++ (or C) commands.

Fortran commands (default).

Java commands (same as C++).

LaTeX commands (as a *source* code language).
m4 commands.

Prolog commands.

shell (csh, sh, perl, awk, tcl) commands.

) A

@start_documentation = (’Begin_Doc’);

Q@end_documentati
O@always_print =
Q@comment_charact
@comment_endings

3

elsif ($source eq ’-

on = (’End_Doc’);
(Galways_print);

ers = (O7\s*//7,7 " \s*x/*’,’"#’);
= O*/2);

fortran’) {

@start_documentation = (’Begin_Doc’);

Q@end_documentati

Galways_print =

Qcomment_charact
3

elsif ($source eq ’-

on = (’End_Doc’);
(Galways_print);
ers = (P7[Cc]’,’"\\sx*!’);

java’) {

@start_documentation = (’Begin_Doc’);

@end_documentati
@always_print =
Q@comment_charact
@comment_endings

}

elsif ($source eq ’-

on = (’End_Doc’);

(Galways_print);

ers = (P7\s*//7,7 "\s*/*#*’,°>"\s*x/*7);
= (O\x/7);

latex’) {

@start_documentation = (’Begin_Doc’);

Q@end_documentati
@always_print =

on = (’End_Doc’);
(@always_print);

18

Qcomment_characters = (?~\s*/’);

}

elsif ($source eq ’-md’) {
@start_documentation = (’Begin_Doc’);
Q@end_documentation = (’End_Doc’);
Q@always_print = (Qalways_print);
@comment_characters = (’"\s*dnl’);

}

elsif ($source eq ’-prolog’) {
@start_documentation = (’Begin_Doc’);
Q@end_documentation = (’End_Doc’);
@always_print = (@always_print);
Q@comment_characters = (?~\s*,’,’ "\s*x\/*’);
@comment_endings = (’*x/’);

}

elsif ($source eq ’-shell’) {
@start_documentation = (’Begin_Doc’);
@end_documentation = (’End_Doc’);
@always_print = (Q@always_print);
Q@comment_characters = (O "\s*x#’);

Self-Documentation (or Self-Test) Mode.

if ($self_doc) {
@always_print = ();
¥
@never_print = (@never_print,’Begin_Self_Document’,’End_Self_Document’);
@never_print = (@never_print,’Begin_Self_Test’,’End_Self_Test’);

Verbatim and Header-Only Modes.

$doc_header ".doc_header";
$doc_footer ".doc_footer";
if ($file_verbatim || $header_only) {
$include = true;
$verbatim = true;
($infile_dir = $ENV{"PWD"}."/".$infile) =~ s|/["/1*$I|;
$infile_dir =" sl.*/|1;
($infile_name = $infile) =~ s|~.*/|[;
($infile_base = $infile_name) =~ s/\.["\.1%$//;
if (-r $doc_header) {
open(HEADER, "$doc_header") || die "Can’t open $doc_header: $!";
while (<HEADER>) {
chop;
s/doc_filename_base/$infile_base/;
s/doc_filename/$infile_name/;

19

s/doc_dirname/$infile_dir/;

print;
}
close (HEADER) ;
}
}
else {
$include = 0;
$verbatim = 0;
}

Set regexp for matching blanks after the comment keywords.
Default number of blanks to match is one.

($number_of_blanks) || ($number_of_blanks = 1);
$blanks = > (.’ ’x$number_of_blanks).’)7?’;

Make regular expressions from the lists of keywords.

$comment_characters = join("$blanks|",@comment_characters) .$blanks;
$endl = ’\s*x(’.join(’|’,@comment_endings).’) *\s*$’;

$beginl = *~(’.join(’|’,@comment_characters).’)*’.$blanks.’\s*x(’;
$fname =)\s*(["*\s]*)’.$endl;

$start_documentation = $beginl.join(’|’,@start_documentation).$fname;
$end_documentation = $beginl.join(’|’,@end_documentation).’)’.$endl;
$start_verbatim = $beginl.join(’|’,@start_verbatim) .?)? .$endl;
$end_verbatim = $beginl.join(’|’,@end_verbatim) .?)? .$endl;
$always_print = join(’|’,Galways_print);

$never_print = join(’|’,@never_print) ;

Loop over lines from each input file.

while (<INFILE>) {
chop; # Strip record separator.

Turn off documentation mode if one of the end_documentation
keywords is found. Only check if outside of verbatim scope.

if ('$verbatim) {
/$end_documentation/ && ($include = 0);
}

Turn off verbatim mode if one of the end_verbatim
keywords is found (unless -verbatim or -headeronly
has been specified as a flag). Set the suppress

variable to suppress printing of the keyword line.

if (/$end_verbatim/ && !'$file_verbatim && !$header_only) {

$verbatim = 0;
$suppress = true;

Turn off include mode at the end of the header for
-headeronly option.

20

!/$comment_characters/ && ($header_only) && ($include = 0);
Optional massaging of documentation.
if (!$verbatim) {
Remove comment characters.
s/$comment_characters//;
Turn on verbatim mode if one of the start_verbatim
keywords is found. Set the suppress variable to
suppress printing of the keyword line.
if (/$start_verbatim/) {
$verbatim = true;
$suppress = true;
Suppress printing if a never_print keyword is found.
/$never_print/ && ($suppress = true);
Optional print.
if ($include && !$suppress) {
Self-Documentation (or Self-Test) mode.
if ($self_doc) {
Remove Self-Doc Comment Characters.
s/ \s*%//;

push (@self_doc_script,$_);

Regular print.

else {
print;

}
¥
else {

$suppress = 0;

Print lines that contain an always_print keyword.

($#always_print != -1) && /$always_print/ && (print);
}

Turn on documentation mode if one of the start_documentation

21

keywords is found. Start with verbatim turned off.

if (/$start_documentation/ && !$header_only) {
$include = true;
$verbatim = 0;

Redirect output as directed.

$file = $4;
if ($directory) {
$file = $directory.’/’ . $file;
(! -d $directory) && (system "mkdir $directory");
}
close(STDOUT) ;
if ($file eq "") {
($verbose) && (print STDERR "Output to STDOUT.");
open (STDOUT, ">&SAVESTDOUT") ;

}

elsif ($opened{$file}) {
($verbose) && (print STDERR "Output appended to ", $file, ".");
open (STDOUT, ">>$file");

}

else {
($verbose) && (print STDERR "Output to ", $file, ".");
$opened{$file} = 1;
open (STDOUT, ">$file");

}

Verbatim and Header-Only Modes.

if ($file_verbatim || $header_only) {
if (-r $doc_footer) {

open(FOOTER, "$doc_footer") || die "Can’t open $doc_footer: $!";

while (<KFOOTER>) {
chop;
s/doc_filename_base/$infile_base/;
s/doc_filename/$infile_name/;
s/doc_dirname/$infile_dir/;

print;
}
close (FOOTER) ;
}
¥

}
Info to user.
$, = 7, # Set output field separator.

if ($verbose && keys(%opened)) {
(print STDERR "Document wrote these files:", keys()opened));
}

22

Run Self-Documentation (or Self-Test) Script.

if ($self_doc) {
if ($silent) {
$answer = ’y’;
¥
else {
if ($self_test) {
print STDERR "The self-test option will execute this script:";
}
else {
print STDERR "The self-documentation option will execute this script:";

foreach $statement (@self_doc_script) {
print STDERR $statement;
}
$\ =" "
print STDERR "Okay to proceed?";
$answer = <STDIN>;
$answer = substr($answer,0,1);
}
if ($answer eq ’y’ || $answer eq "Y") {
open(SCRIPT, ">/tmp/$$");
$\ = "\n";
foreach $statement (@self_doc_script) {
print SCRIPT $statement;
}
close(SCRIPT);
open (STDOUT, ">&SAVESTDOUT") ;
system "chmod a+x /tmp/$$; /tmp/$$; rm /tmp/$$";

23

