
C++??
A Critique of C++

2nd Edition

Ian Joyner

c/- Unisys - ACUS
115 Wicks Rd, North Ryde

Australia 2113
Tel: +61-2-390 1328 Fax +61-2-390-1391

ian@syacus.acus.oz.au

© Ian Joyner 1992

1. Introduction..1
2. The Role of a Programming Language..1

2.1. Safety and Courtesy Concerns ...3
4. C++ Specific Criticisms ..4

3.1. Virtual Functions ..4
3.2. Pure Virtual Functions ..6
3.3. The Nature of Inheritance..7
3.4. Function Overloading ...7
3.5. Virtual Classes..8
3.6. Name overloading...8
3.7. Polymorphism and Inheritance ..9
3.8. ‘.’ and ‘->’ ...10
3.9. Anonymous parameters in Class Definitions ...10
3.10. Nameless Constructors ..11
3.11. Constructors and Temporaries ...11
3.12. Optional Parameters ..11
3.13. Bad deletions...11
3.14. Local entity declarations..12
3.15. Members ...12
3.16. Friends ...12
3.17. Static ...12
3.18. Union ...13
3.19. Nested Classes..13
3.20. Global Environments..13
3.21. Header Files ...14
3.22. Class Interfaces...14
3.23. Class header declarations ..14
3.24. Garbage Collection ...15
3.25. Type-safe linkage ...15
3.26. C++ and the software lifecycle..16
3.27. Reusability and Communication ...17
3.28. Reusability and Trust..17
3.29. Reusability and Compatibility ..17
3.30. Reusability and Portability..17
3.31. Idiomatic Programming ..17
3.32.Concurrent Programming ...18

4. The role of Language...18
5. On Writing ..20
6. Generic C criticisms ..20

6.1. Pointers...21
6.2. Arrays...21
6.3. Function Parameters..22
6.4. void * ...22
6.5. void fn ()...22
6.6. fn ()...23
6.7. Metadata in Strings ...24
6.8. ++, -- ..24
6.9. Defines ...25
6.10. NULL vs 0 ..25
6.11. Case Distinction ..25
6.12. Assignment Operator ..26
6.13. Type Casting ..26
6.14. Semicolons...27

7. Conclusions..27
8. Bibliography ..29

1. Introduction most difficult to understand and technical section
of the paper, but it is fundamental to the
understanding of the weaknesses of C++.The C++ programming language is becoming

widely used. So it is important and timely to
question its success. Two books are already
published on the subject [Sakkinen 92] and
[Yoshida 92]. This critique addresses the
following questions. How well does C++
implement object-oriented concepts? Can it easily
implement small, quick projects? Does it scale up
well for large projects? Does it support or hinder
good programming practices? As a result, does it
ease the production of quality software? What is
the relationship between a language, compiler and
software developers; and between the language,
compiler and the target system? This last question
addresses issues of correctness, compatibility,
portability, and efficiency.

Having said that, I hope that you find this
critique useful, and enjoyable. If by any chance
you do, please feel free to distribute it to your
management, peers and friends.

2. The Role of a Programming
Language

A programming language functions at many
different levels and has many roles. It should be
critiqued with respect to those levels and roles.
Historically, programming languages had a very
limited role, that of writing executable programs.
As programs have grown in complexity, this role
alone has proved insufficient. Many design and
analysis techniques have arisen to support other
necessary roles. The organisation of projects also
required tools external to the language and
compiler, like ‘make.’ Object-oriented techniques
have arisen to help in the analysis and design
phases, and object-oriented languages to support
the implementation phase of OO. Traditional,
tried and tested but failed software practices are
infiltrating the object-oriented world. Object-
orientation, however, offers a better rational
approach to software development. The
complementary roles of analysis, design,
implementation and project organisation should
be better integrated in the object-oriented scheme.
This results in economical software production.

A paper on the recommended practices for use
in C++ [Ellemtel 92] suggests “C++ is a difficult
language in which there may be a very fine line
between a feature and a bug. This places a large
responsibility upon the programmer.” Is this a
responsibility or a costly burden? The ‘fine line’
is a result of poor language definition. The C++
standardisation committee warns “C++ is already
too large and complicated for our taste” [X3J16
92].

While it is true that C++ is immediately
usable by many C programmers, and many see
this as a strength, the C base is C++’s greatest
weakness. This is the engineering compromise
that C++ devotees talk about. Adoption of C++
does not suddenly transform C programmers into
object-oriented programmers. A complete change
of thinking is required, and C++ actually makes
this difficult. A critique of C++ cannot be
separated from criticism of the C base language,
as it is essential for the C++ programmer to be
fluent in C. Many of C’s problems affect the way
that object-orientation is implemented and used in
C++. This critique is not exhaustive of the
weaknesses of C++, but it illustrates the practical
consequences of these weaknesses with respect to
the timely and economic production of quality
software.

C++ is an interesting experiment in adapting
the advantages of object-orientation to a
traditional programming language. Bjarne
Stroustrup is to be applauded for having the
insight to put the two technologies together. C++,
however, retains the problems of the old order of
software production. C++ has an advantage over
C as it supports many facets of object-orientation.
These can be used for limited analysis and design.
The processes of analysis, design, and
organisation, however, are still largely external to
C++. Thus C++ has not realised the important
advantages of object-orientation that will indeed
lead to the economic production of software.

This critique criticises C++ in its own right,
without comparison to other languages. Section 2
considers the role of a programming language.
Section 3 examines some specific aspects of C++.
Section 4 examines the general role of language.
Section 5 is a short comment on writing. Section
6 looks specifically at C. The conclusion
examines where C++ has left us, and considers the
future. The approach taken is to criticise specific
aspects of C++ and C. Each section tries to be self
contained. It is expected that not everyone will
agree with all of the sections. It is probably best to
approach the paper, not by reading it entirely, but
to read those sections that interest you. One
section, however, is fundamental to the criticism
of C++, that on virtual functions. This is also the

A language should not only be critiqued from
a technical point of view, considering its syntactic
and semantic features. It should also be critiqued
from the viewpoint of its contribution to the entire
software development process. It should enable
communication between project members acting
at different levels, from management, who have a
requirement for the product, to testers, who must
test the result. It should also enable
communication between project members
separated in space and time. Often one
programmer is not responsible for a task over its
entire lifetime.

C++?? 2nd Edition page 1

The primary purpose of any language is
communication. A programming language should
support the exchange of ideas, intentions, and
decisions between project members. A
programming language should provide a formal,
yet readable, notation to support consistent
descriptions of systems that satisfy the
requirements of diverse problems. A language
should also provide methods for automated
project tracking. This ensures that modules
(classes and functionality) that satisfy project
requirements are completed in a timely and
economic fashion. A programming language aids
reasoning about the design, implementation,
extension, correction, and optimisation of a
system.

techniques of schema checking are often criticised
as being restrictive and therefore unusable for real
world software. This is nonsense and
misunderstands of the power of these languages. It
is an immature conception; the best programmers
realise that programming is difficult. As a whole,
the computing profession is still learning to
program.

Another example of consistency checking
comes from the user interface world. Instead of
correcting a user after an erroneous action, a good
user interface will not offer the action as a
possibility in the first place. It is cheaper to avoid
error than to fix it. Most people drive their cars
with this principle in mind. Smash repair is time
consuming and expensive.

A language definition should enable the
development of integrated automated tools to
support software development. For example,
browsers, editors and debuggers. The compiler is
another such tool. The role of a compiler is
twofold. Firstly, to generate code for the target
machine. The role of the machine is to execute the
produced programs. A compiler has to check that
a program conforms to the language syntax and
grammar, so it can ‘understand’ the program in
order to translate it into an executable form.
Secondly, and more importantly, the compiler
should check that the programmers expression of
the system is complete, valid and consistent. A
compiler should perform semantics checking. This
is checking that a program is internally consistent.
Generating a system that has detectable
inconsistencies is pointless.

Program development is a dynamic process. A
program description is constantly modified during
development. Modifications often lead to
inconsistencies and error. Languages and
compilers that provide consistency checks help
prevent such ‘bugs’, which can creep into a
previously working system. These checks help
verify that as a program is modified, previous
decisions and work are not invalidated.

It is interesting to consider how much
checking could be integrated in an editor. The
focus of many current generation editors is text.
What happens if we change this focus from text to
program components? Such editors might check
not only syntax, but semantics. Alerting
programmers of potential errors earlier and
interactively will shorten development times.
Future languages should be defined very cleanly
in order to enable such editor technology.Semantics checking is done by ensuring that a

specification conforms to some schema. For
example, the sentence “The boy drank the
computer and switched on the glass of water” is
grammatically correct. But the sentence is
nonsense. It does not conform to the mental
schema we have of computers and glasses of
water. A programming language should include
techniques for the detection of similar nonsense.
The language definition provides the framework
that makes this role of the compiler possible.

A programming language should provide a
formal notation. During requirements analysis and
design phases, formal and semi-formal notations
are required. Notations used in analysis, design,
and implementation phases should be
complementary, rather than contradictory.
Currently, analysis, design and modelling
notations are too far removed from programming,
while programming languages are in general too
low level. Both designers and programmers must
compromise to fill the gap. Current notations
provide difficult transition paths between stages.
This ‘semantic gap’ contributes to errors and
omissions between the requirements, design and
implementation phases. Future programming
languages will be an implementation extension of
the high level notations used for requirements
analysis and design. This will lead to improved
consistency between analysis, design and
implementation. Object-oriented techniques
emphasise the importance of this, as abstract
definition and concrete implementation can be
separate, yet provided by the same syntax.

Checking is often enabled by the specification
of redundant information. Declarations are an
example of redundancy that help check for
misspellings. Declarations define the vocabulary
of a program, ie the elements in its universe. The
compiler uses redundant information for
consistency checking, and strips it away to
produce efficient executable systems. Type safety
is another technique. Declarations also associate
an entity with a type, to define the entities role.
Typing ensures that you can’t drink computers or
switch on glasses of water. C++ is an
improvement over C in type safety.

It is a misconception that consistency checks
are ‘training wheels’ for student programmers,
and that ‘syntax’ errors are a hindrance to
professional programmers. Languages that exploit

Programming languages also provide
notations to formally document a system.
Program source is the only reliable documentation
of a system, so a language should explicitly

C++?? 2nd Edition page 2

support documentation. As with all language, the
effectiveness of communication is dependent upon
the skill of the writer. Good program writers
require languages that support the role of
documentation. They require that the syntax of a
language is perspicuous, and easy to learn. Those
not trained in the skill of ‘writing’ programs, can
read them to gain understanding of the system.
After all, it is not necessary for newspaper readers
to be journalists.

These quotes from Reade are a good summary
of the principles from which I criticise C++. What
Reade calls administrative tasks, I call
bookkeeping. C and C++ are often criticised for
being cryptic. The reason is that C concentrates on
points 2 and 3, while the description of what is to
be computed is obscured. High level languages
describe ‘what’ is to be computed. This is the
problem domain. ‘How’ a computation is
achieved is in the low-level machine-oriented
domain. The conflict between these aspects recurs
frequently throughout this critique. Automating
the bookkeeping tasks enhances correctness,
compatibility, portability and efficiency.
Bookkeeping tasks arise from having to specify
‘how’ a computation is done. Specifying ‘how’
things are done in some environments hinders
portability to other platforms.

Chris Reade [Reade 89] gives the following
explanation of programming and languages. “One,
rather narrow, view is that a program is a
sequence of instructions for a machine. We hope
to show that there is much to be gained from
taking the much broader view that programs are
descriptions of values, properties, methods, prob-
lems and solutions. The role of the machine is to
speed up the manipulation of these descriptions to
provide solutions to particular problems. A
programming language is a convention for
writing descriptions which can be evaluated.”

The industry should be moving towards these
ideals. They will help in the economic production
of software, rather than the costly techniques of
today. We should consider what we need, and
assess the problems of what we have against that.
Object-orientation provides one solution to these
problems. Its effectiveness, however, depends on
the quality of its implementation.

[Reade 89] also describes programming as
being a “Separation of concerns”. He says:

“The programmer is having to do several
things at the same time, namely,

It is relevant to ask if grafting OO concepts
onto a conventional language realises the full
benefits of OO? Perhaps a biblical quote can be
considered: “No one sews a patch of unshrunk
cloth on to an old garment; if he does, the patch
tears away from it, the new from the old, and
leaves a bigger hole. No one puts new wine into
old wineskins; if he does, the wine will burst the
skins, and then wine and skins are both lost. New
wine goes into fresh skins.” Mark 2:22

(1) describe what is to be computed;
(2) organise the computation sequencing into

small steps;
(3) organise memory management during the

computation.”
Reade continues, “Ideally, the programmer

should be able to concentrate on the first of the
three tasks (describing what is to be computed)
without being distracted by the other two, more
administrative, tasks. Clearly, administration is
important but by separating it from the main task
we are likely to get more reliable results and we
can ease the programming problem by automating
much of the administration.

We must abandon disorganised and error-
prone practices, not adapt them to new contexts.
How well can hybrid languages support the
sophisticated requirements of modern software
production? Surely a basic premise of object-
oriented programming is to enable the
development of sophisticated systems through the
adoption of the simplest techniques possible?
Software development technologies and
methodologies should not impede the production
of such sophisticated systems.

“The separation of concerns has other
advantages as well. For example, program proving
becomes much more feasible when details of
sequencing and memory management are absent
from the program. Furthermore, descriptions of
what is to be computed should be free of such
detailed step-by-step descriptions of how to do it
if they are to be evaluated with different machine
architectures. Sequences of small changes to a
data object held in a store may be an inappropriate
description of how to compute something when a
highly parallel machine is being used with
thousands of processors distributed throughout the
machine and local rather than global storage
facilities.

2.1. Safety and Courtesy Concerns
This critique makes two general types of

criticism, about ‘safety’ concerns and ‘courtesy’
concerns. These themes recur throughout this
critique, as C and C++ have flaws that
compromise them frequently. Safety concerns
affect the external perception of the quality of the
program. Failure to meet safety concerns results in
unfulfilled requirements and program crashes.“Automating the administrative aspects means

that the language implementor has to deal with
them, but he/she has far more opportunity to make
use of very different computation mechanisms
with different machine architectures.”

Courtesy concerns affect the internal view of
the quality of a program in the development and
maintenance process. Courtesy concerns are
usually stylistic and syntactic, whereas safety
concerns are semantic. The two often go together.

C++?? 2nd Edition page 3

It is courtesy for an airline to keep its fleet well
maintained. This courtesy concern is also very
much a safety concern.

descendant classes are part of the same name
space as classes they inherit from. The
redeclaration of a name within the same scope
should cause a name clash. Allowing two entities
to have the same name within one scope causes
ambiguity and other problems. (See the section on
name overloading.)

Courtesy issues are even more important in
the context of reusable software. Reusability
depends on the clear communication of the
purpose of a module. Courtesy is important to
establish social interactions, such as com-
munication. Courtesy implies inconvenience to
the provider, but provides convenience to others.
Courtesy issues include choosing meaningful
identifiers, consistent layout and typography,
meaningful and non-redundant commentary, etc.
Courtesy issues are more than just a style
consideration. A language design should directly
support courtesy issues. A language, however,
cannot enforce courtesy issues, and it is often
pointed out that poor, discourteous programs can
be written in any language. But this is no reason
for being careless about the languages that we
develop and choose for software development.

The following example illustrates the second
problem:

class A
{

public:
void nonvirt ();
virtual void virt ();

}

class B : public A
{

public:
void nonvirt ();
void virt ();

}3. C++ Specific Criticisms
A a;
B b;

3.1. Virtual Functions A *ap = &b;
Polymorphism is a key concept of OOP.

Virtual functions are one way to implement
polymorphism. A language designer’s choice is
whether this should be specified in the parent or
the inheriting class. Is it the decision of the
designer of the parent or descendant class? Cases
can be made for both. They are not mutually
exclusive and can be catered for quite easily in an
object-oriented language.

B *bp = &b;

bp->nonvirt (); // calls B::nonvirt
 // as you would
 // expect
ap->nonvirt (); // calls A::nonvirt,
 // even though this
 // object is of type
 // B.

There are three options, corresponding to
‘must not’, ‘can’, and ‘must’ be redefined:

ap->virt (); // calls B::virt, the
 // correct version of

1) The redefinition of a routine is prohibited;
descendant classes must use the routine as is.

 // the routine for B
 // objects.

2) A routine could be redefined. Descendant
classes can use the routine as provided, or provide
their own implementation as long as it conforms
to the original interface definition and
accomplishes at least as much.

In this example, class B has extended or
replaced routines in class A. B::nonvirt is the
routine that should be called for objects of type B.
It could be pointed out that C++ gives the client
programmer flexibility to call either A::nonvirt or
B::nonvirt. But this can be provided in a simpler
more direct way. A::nonvirt and B::nonvirt should
be given different names. That way the
programmer calls the correct routine explicitly,
not by an obscure and error prone trick of the
language, as follows:

3) A routine is abstract. No implementation
is provided and each non-abstract descendent class
must provide its own implementation. This is
polymorphism.

The base class designer must decide options 1
and 3. Descendant class designers must decide
option 2. A language should provide direct syntax
for these options. class B : public A

{
Option 1 public:

C++ does not cater for the first option. Not
using a virtual function is the closest. But in that
case the routine can be completely replaced. This
causes two problems. Firstly, a routine can be
unintentionally replaced in a descendent. The
compiler should report a syntax error due to
‘duplicate declaration’. This is logical as

void b_nonvirt ();
void virt ();

}

B b;
B *bp = &b;

C++?? 2nd Edition page 4

bp->nonvirt (); // calls A::nonvirt whether the function f() is defined virtual or non-
virtual in order to interpret exactly what a->f ()
means. Therefore, the statement a->f () is not
implementation independent. A change in the
declaration of f () will change the semantics of the
invocation. Implementation independence means
that a change in the implementation DOES NOT
change the semantics, of executable statements.

bp->b_nonvirt (); // calls
 // B::b_nonvirt

Now the designer of class B has direct control
over B’s interface. The application requires that
clients of B can call both A::nonvirt, and
B::b_nonvirt. B’s designer has explicitly provided
for this. This is good object-oriented design,
which provides strongly defined interfaces. C++
allows client programmers to play tricks with the
class interfaces, external to the class, and B’s
designer cannot prevent A::nonvirt from being
called. This is opposite to good modular design.
This shows the unsafeness C++’s virtual
mechanism. Objects of class B have their own
specialised ‘nonvirt’. But B’s designer does not
have control over B’s interface to ensure that the
correct version of nonvirt is called.

If a change in the declaration changes the
semantics, this should generate a compiler
detected error. The programmer should make the
statement semantically consistent with the
changed declaration. This reflects the dynamic
nature of software development, where the
program text is subject to perpetual change.

For yet another case of the inconsistent
semantics of the statement a->f () vs constructors,
consult section 10.9c, p 232 of the C++ ARM.
[Sakkinen 92] points out that a descendant class
can redefine a private virtual function even though
it cannot access that function in other ways. When
the ancestor class calls the function it instead
invokes the function in the descendant class.

C++ also does not protect class B from other
changes in the system. Suppose we need to write a
class C that needs ‘nonvirt’ to be virtual. Then
‘nonvirt’ in A will be changed to virtual. But this
breaks the B::nonvirt trick. The requirement of
class C to have a virtual routine forces a change in
the base class. This has an effect on all other
descendants of the base class, instead of the
specific new requirement being localised to the
new class. This is opposite to the reason for OOP
having loosely coupled classes, so that new
requirements, and modifications will have
localised effects, and not require changes
elsewhere which can potentially break other
existing parts of the system.

Option 2
The second option should be left open for the

programmers of descendant classes. In C++,
however, the decision must be made in the base
class. In object-oriented design, the decisions you
decide not to make are as important as the
decisions you make. Decisions should be made as
late as possible. This strategy prevents mistakes
being built into the system at early stages. By
making early decisions, you are often stuck with
assumptions that later prove to be incorrect. C++
requires the parent class to specify potential
polymorphism by virtual (although an
intermediate class in the inheritance chain can
introduce virtual). This prejudges that a routine
might be redefined in descendants. This can be a
problem because routines that aren’t actually
polymorphic are accessed via the slightly less
efficient virtual table technique instead of a
straight procedure call. (This is never a large over-
head but object-oriented programs tend to use
more and smaller routines making routine
invocation a more significant overhead.) The
policy in C++ should be that routines that might
be redefined should be declared virtual.

Rumbaugh et al, put their criticism of C++’s
virtual as follows: “C++ contains facilities for
inheritance and run-time method resolution, but a
C++ data structure is not automatically object-
oriented. Method resolution and the ability to
override an operation in a subclass are only
available if the operation is declared virtual in the
superclass. Thus, the need to override a method
must be anticipated and written into the origin
class definition. Unfortunately, the writer of a
class may not expect the need to define
specialized subclasses or may not know what
operations will have to be redefined by a subclass.
This means that the superclass often must be
modified when a subclass is defined and places a
serious restriction on the ability to reuse library
classes by creating subclasses, especially if the
source code library is not available. (Of course,
you could declare all operations as virtual, at a
slight cost in memory and function-calling
overhead.)” [RBPEL91]

Virtual, however, is the wrong mechanism for
the programmer to deal with. A compilation
system can detect polymorphism, and generate the
underlying virtual code, where and only where
necessary. Having to specify virtual burdens the
programmer with another bookkeeping task. This
is the main reason why C++ is a weak object-
oriented language as the programmer must
constantly be concerned with low level details.
The compiler should take care of such detail and
so relieve the programmer.

A further argument is that any statement
should consistently have the same semantics. The
object-oriented interpretation of a statement like
a->f () is that the most suitable implementation of
f() is invoked for the object referred to by ‘a’,
whether the object is of type A, or a descendent of
A. In C++, however, the programmer must know

Another problem in C++ is mistaken
redefinition. The base class routine can be

C++?? 2nd Edition page 5

redefined unwittingly. The compiler should report
an erroneous name redefinition within the same
name space unless the descendant class
programmer specifies that the routine redefinition
is really intended. The same name can be used,
but the programmer must be conscious of this,
and state this explicitly, especially in
environments where systems are assembled out of
preexisting components. Unless the programmer
explicitly overrides the original name a syntax
error should report that the name is a duplicate
declaration. C++, however, adopted the original
approach of Simula. This approach has been
improved upon, and other languages have adopted
better, more explicit approaches, that avoid the
error of mistaken redefinition.

3.2. Pure Virtual Functions
As mentioned above, pure virtual functions

provide a means of leaving a function undefined
and abstract. A class that has such an abstract
function cannot be directly instantiated. A non-
abstract descendant class must define the function.
The C++ pure virtual syntax is:

virtual void fn () = 0;

This leaves the reader to guess its meaning,
even those well versed in object-oriented
concepts. A better choice would have been a
keyword such as ‘abstract’. Direct expression of
concepts enhances communication, and the ease
with which a language can be learnt. When
learning a language it is often important to use the
index of a text book. A keyword like ‘abstract’
would be easily found in an index. But what do
you look for in the case of ‘= 0’? You might not
even realise it is significant. It should have
syntactic significance as abstract functions are a
very important concept in object-oriented design.
The C++ decision is in keeping with the C
philosophy of avoiding keywords. This is often at
the expense of clarity. A keyword would
implement this concept more clearly. For
example:

Eiffel and Object Pascal cater for this situation
as the descendant class programmer is required to
specify that redefinition is intended. This has the
extra benefit that a later reader or maintainer of
the class can easily identify the routines that have
been redefined, and that this definition is related
to a definition in an ancestor class without having
to refer to ancestor class definitions. Thus option
2 is exactly where it should be, in descendant
classes.

Option 3
pure virtual void fn ();

The pure virtual function caters for the third
option. The routine is undefined, the class is
abstract and cannot be directly instantiated. A
descendant class must define the routine if it is to
be instantiated. Any descendants that do not
define the routine are also abstract classes. This
concept is correct, but see the section on pure
virtual functions for a criticism of the syntax.

or

abstract void fn ();

The mathematical notation used in C++
suggests that values other than zero could be used.
What if the function is equated to 13? -

virtual void fn () = 13;
Virtual is a difficult notion to grasp. The

related concepts of polymorphism and dynamic
binding, redefinition, and overloading are easier to
grasp, being oriented towards the problem
domain. Virtual routines are an implementation
mechanism for polymorphism. Polymorphism is
the ‘what’, and virtual is the ‘how’. Smalltalk and
Objective-C use a different mechanism to
implement polymorphism. Virtual is an example
of where C++ obscures the concepts of OOP. The
programmer has to come to terms with low level
concepts, rather than the higher level object-
oriented concepts. Interesting as underlying
mechanisms might be for the theoretician or
compiler implementer, the practitioner should not
be required to understand or use them to make
sense of the higher level concepts. Having to use
them in practice is tedious and error-prone, and
can prevent the adaptation of software to further
advances in the underlying technology and
execution mechanisms (see concurrency).

A function is either pure, or it is not. This to
any analyst suggests a boolean state, which a
single keyword conveys. A simple suggestion to
fix this is to define ‘= 0’ as abstract:

#define abstract = 0

then

virtual void fn () abstract;

‘Pure virtual’ is also an abuse of natural
language. It is a combination of words that are
somewhat opposite in meaning. Pure means
something that really is what it appears to be. For
example pure gold. Virtual means something that
appears to be what it actually is not. For example
virtual memory. Perhaps virtual gold could be
fools gold. As has been said before, virtual is a
difficult concept to grasp. When it is combined
with a word such as ‘pure’, the meaning becomes
even more obscure. Modern language designers
should be very careful in the vocabulary they
choose.

C++?? 2nd Edition page 6

3.3. The Nature of Inheritance before. Assembling software components is
building a system that has never existed before.Inheritance is a close relationship. It provides

a fundamental way to assemble software
components. Objects that are instances of a class
are also instances of all ancestors of that class. For
effective object-oriented design the consistency of
this relationship should be preserved. Each
redefinition in a subclass should be checked for
consistency with the original definition in an
ancestor class. A subclass should preserve the
requirements of an ancestor class. Requirements
that cannot be preserved indicate a design error
and perhaps inheritance is not appropriate.
Consistency due to inheritance is fundamental to
object-oriented design. C++’s implementation of
non-virtual overloading, and overloading by
signature (see below) means that the compiler
cannot check for this consistency. C++ does not
realise this aspect of object-oriented design. This
contributes to a wide and costly gap between
analysis and design, and implementation.

Inheritance in C++ is like a jig-saw where the
pieces fit together, but the compiler has no way of
checking that the resultant picture makes sense. In
other words C++ has provided the syntax for
classes and inheritance but not the semantics.
Certainly, not very many reusable C++ libraries
are available, which suggests that C++ might not
support reusability as well as possible. C++ fails
to provide this fundamental goal of object-
oriented design and programming.

3.4. Function Overloading
C++ allows functions to be overloaded if the

arguments in the signature are of different types.
Such overloading can be useful as these examples
show:

max (int, int);
max (real, real);

Inheritance has been classified as ‘syntactic’
inheritance and ‘semantic’ inheritance. Saake et al
describe these as follows : “Syntactic inheritance
denotes inheritance of structure or method
definitions and is therefore related to the reuse of
code (and to overriding of code for inherited
methods). Semantic inheritance denotes in-
heritance of object semantics, ie of objects
themselves. This kind of inheritance is known
from semantic data models, where it is used to
model one object that appears in several roles in
an application.” [SJE91]. Saake et al concentrate
on the semantic form of inheritance. Behavioural
or semantic inheritance expresses the role of an
object within a system.

This will ensure that the best max routine for
the types int and real will be invoked. Object-
oriented programming, however, provides a
variant on this. Since the object is passed to the
routine as a hidden parameter (‘this’ in C++), an
equivalent but more restricted form is already
implicitly included in object-oriented concepts. A
simple example such as the above would be
expressed as:

int i, j;
real r, s;

i.max (j);
r.max (s);

Wegner, however, believes code inheritance to
be of more practical value. He classifies the
difference between syntactic and semantic
inheritance as code and behaviour hierarchies
[Weg90] (p43). He suggests these are rarely
compatible with each other and are often
negatively correlated. Wegner also poses the
question of “How should modification of
inherited attributes be constrained?” Code
inheritance provides a basis for modularisation.
Behavioural inheritance provides modelling by
the ‘is-a’ relationship. Both are useful in their
place. Both require consistency checks that
combinations due to inheritance actually make
sense.

but i.max (r) and r.max (j) result in
compilation errors because the types of the
arguments do not agree. (By operator overloading
of course, these can be better expressed, i max j
and r max s, but min and max are peculiar
functions that might want to accept two or more
parameters of the same type.)

The above shows that in most cases, the
object-oriented paradigm can consistently express
function overloading, without the need for the
function overloading of C++. C++, however, does
make the notion more general. The advantage is
that more than one parameter can overload a
function, not just the implicit current object pa-
rameter.

It seems that inheritance is most powerful in
the most restrictive form of a semantics
preserving relationship. A subclass should not
break the assumptions of an ancestor class.

The disadvantage is that C++ introduces some
inconsistencies that the compiler cannot detect. If
the programmer intends to redefine a virtual
routine, but makes a mistake in the declaration of
the function signature, the compiler will
erroneously assume an overloaded function. Any
calls to the function using one or other of the
signatures will also fail to detect the
inconsistency.

Software components are like jig-saw pieces.
When assembling a jig-saw the shape of the
pieces must fit, but more importantly, the
resulting picture must make sense. Assembling
software components is more difficult. A jig-saw
is reassembling a picture that was complete When calling the routine, if the programmer

makes a mistake in supplying the actual

C++?? 2nd Edition page 7

parameters, a C++ compiler cannot be specific
about the error. It can only report that no function
with a matching signature could be found.
Programmers make this sort of mistake for subtle
reasons, and it can be time consuming to pinpoint
the parameter at fault. Secondly, the incorrect
parameter might accidentally match, one of the
other routines. In that case this error will be
propagated into the production code, and could
remain undetected a long time.

and attempting to do so considerably complicates
design.

3.6. Name overloading
Naming is fundamentally important in

producing self-documenting software. Naming
helps realise maintainable and reusable software
components. Names are fundamental in freeing
programmers from low level manipulation of
addresses. Naming is the basis for differentiating
between different entities in a software module.
Name overloading allows the same name to refer
to two or more different entities. The problem is
whether the resultant ambiguity is useful, and how
to resolve it, as ambiguity weakens the power of
names to distinguish entities.

If it is felt that C++’s scheme of having
parameters of different types is useful, it should
be realised that object-oriented programming
provides this in a more restricted and disciplined
form. This is done by specifying that the
parameter needs to conform to a base class. Any
parameter passed to the routine can only be a type
of the base class, or a subclass of the base class.
For example:

Name overloading is useful for two purposes.
Firstly it allows programmers to work on two or
more modules without concern about name
clashes. The ambiguity can be tolerated as within
the context of each module, the name
unambiguously refers to a unique entity.
Secondly, name overloading provides
polymorphism, where the same name applied to
different types refers to different implementations
for those types. Polymorphism allows one word to
describe ‘what’ is to be computed. Different
classes might require different specifications of
‘how’, a computation is done. For example ‘draw’
is an operation that is applicable to all different
shapes, even though circles and squares, etc are
‘drawn’ differently.

A.f (B someB) {...};

class B ...;
class D : public B ...

A a;
D d;

a.f (d);

The entity ‘d’ must conform to the class ‘B’,
and the compiler checks this.

The alternative to function overloading by
signature, is to require functions with different
signatures to have different names. Names should
be the basis of distinction of entities. This is
known to work and solves the above problems.
The compiler can cross check that the parameters
supplied are correct for the given routine name.
This also results in better self-documented
software. It is often difficult to choose appropriate
names for entities, but it is well worth the effort.

These two uses of name overloading provide a
powerful concept. But use of the same name in
the same context must be resolved. Errors can
result from ambiguity. In this case the
programmer needs to differentiate between
entities in ways other than name alone. A
common way to do this is to introduce extra
distinguishing names. For example in a group of
people, where two or more share the same first
name, they can be distinguished by their surname.
Similarly a unique first name will distinguish the
members of a family with a common surname.

3.5. Virtual Classes
If class D multiply inherits class A via classes

B and C, then if D wants to inherit only a single
copy of A, the inheritance of A must be specified
as virtual in both B and C. This raises two
questions. Firstly, what happens if A is declared
virtual in only one of B or C? Secondly, what if
another class E wants to inherit multiple copies of
A via B and C? In C++, the virtual class decision
must be made early, reducing the flexibility that
might be required in the assembly of derived
classes. In a shared software environment
different vendors might supply classes B and C. It
should be left to the implementer of class D or E,
exactly how to resolve this problem. And this is
the simplest case. What if A is inherited via more
than two paths, with more than two levels of
inheritance? Such flexibility is key to reusable
software. You cannot envisage when designing a
base class all the possible uses in derived classes,

This is analogous to classes, where each class
in a system is given a unique name. Each member
within a class is also given a unique name. Where
two objects with members of the same name are
used within the same context, the object name can
qualify the members. For example a.mem and
b.mem.

[Reade 89] points out the difference between
overloading and polymorphism. Overloading
means the use of the same name in the same
context for different entities with completely
different definitions and types. Polymorphism
though has one definition, and all types are
subtypes of a principle type. C. Strachey referred
to polymorphism as parametric polymorphism and
overloading as ad hoc polymorphism.

Block structured languages provide
overloading by scoping. Scoping allows the same

C++?? 2nd Edition page 8

name to be used in different contexts without
clash or confusion. Nested blocks provide a subtle
problem. Names in an outer block are in scope in
inner blocks. Many languages, however, allow a
name to be overloaded in an inner block. This
does more than overload the name, it hides it. The
use of a name in the inner block does not indicate
any relationship with the same name in the outer
block. Textually nested blocks ‘inherit’ named
entities from outer blocks. Inheritance
accomplishes this in object-oriented languages.
Inheritance eliminates the need to textually nest
entities, and also accomplishes loose coupling.
Nesting makes entities tightly coupled.

a combination of components, which quickly
leads to an exponentiation in the number of tests
required.

C++ has an analogous form of hiding. A non-
virtual function in a derived class hides a function
in an ancestor class. This hiding is explained in
section 13.1 of the C++ ARM. This is a
discrepancy with declaring multiple functions
with the same name in the same class with
different signatures. A function in the derived
class will hide the functions of the ancestor class,
rather than add its signature to the list of possible
functions which can be called. This is confusing
and error prone. Learning all these ins and outs of
the language is extremely burdensome to the
programmer. Often they will only be learnt after
falling into a trap.

Contrary to most high level languages, a name
should not be overloaded while it is in scope. This
inconveniently hides the outer declaration, and the
programmer cannot access the outer entity. It is
also error prone. The following example
illustrates this:

3.7. Polymorphism and Inheritance
Inheritance provides a form of name

overloading similar to overloading in subblocks.
The scope of a name is the class in which it
occurs. If a name occurs twice in a class, it is a
syntax error. Inheritance introduces some
questions over and above this simple
consideration of scope. Should a name declared in
a base class be in scope in a derived class? There
are three choices:

{
 int i;
 {

 int i; // hide the outer i.
 i = 13; // assign to the inner i.

 // Can’t get to the outer i here.
 // It is in scope, but hidden.
 } 1) Names are in scope only in the immediate

class but not in subclasses. Subclasses can freely
reuse names because there is no potential for a
clash. This precludes software reusability.
Subclasses will not inherit definitions of
implementation. Therefore case 1 is not worth
considering.

}

Now delete the inner declaration:

{
int i;

2) The name is in scope in a subclass, but the
name can be overloaded without restriction. This
is closest to the overloading of names in nested
blocks. This is C++’s approach. Two problems
arise. Firstly, the name can be unintentionally
reused. Secondly, because the new entity is not
assumed to have any relationship to the original,
its signature cannot be type checked with the
original entity. Since consistency checks between
the superclass and subclass are not possible, the
tight relationship that inheritance implies, which
is fundamental to object-oriented design, is not
guaranteed. This can lead to inconsistencies
between the abstract definition of a base class, and
the implementation of a derived class. If the
derived class does not conform to the base class in
this way, it should be questioned why the derived
class is inheriting from the base class in the first
place. (See the nature of inheritance.)

{
 i = 13; // Syntactically valid,

 // but not the
 // intention.

}
}

The inner overloaded declaration is removed,
and references to that name do not result in syntax
errors due to the same name being in the outer
environment. The inner instruction now
mistakenly changes the value of the outer entity.
A compiler cannot detect this situation unless the
language definition forbids nested redeclarations.
E.W. Dijkstra uses similar reasoning in ‘An essay
on the Notion: “The Scope of Variables”’ in “A
Discipline of Programming”, [Dijkstra 76].

The above example demonstrates how nesting
results in unmaintainable programs. This is
because the inner block is tightly coupled to the
outer block, and each is sensitive to changes in the
other. The advantage of keeping components
decoupled and separate is that a programmer can
confidently make modifications to one component
without affecting other components. Testing can
be limited to the changed component, rather than

3) The name is in scope in the subclass, but
can only be overloaded in a disciplined way to
provide a specialisation of the original. Other uses
of the name are reported as duplicate name errors.
This form of overloading in a subclass ensures the
entity referred to in the subclass is closely related
to the entity in the ancestor class. This helps
ensure design consistency. The relationship of

C++?? 2nd Edition page 9

name scope is not symmetric. Names in a subclass
are not in scope in a superclass (although this is
not the case in typeless languages such as
Smalltalk). In order to provide the consistent
customisation of reusable software components,
the same name should only be used by explicitly
redefining the original entity. The programmer of
the descendant class should indicate that this is
not a syntax error due to a duplicate name, but
that redefinition is intended. (This has already
been covered in the virtual section.) This choice
ensures that the resultant class is logically
constructed. This might seem restrictive, but is
analogous to strong typing, and makes inheritance
a much more powerful concept.

3.9. Anonymous parameters in Class
Definitions

C++ does not require parameters in function
templates to be named. The type alone can be
specified. For example a function f in a class
header can be declared as f (int, int, char). This
gives the client no clue to the purpose of the
parameters, without referring to the
implementation of the function. Meaningful
identifiers are essential in this situation, because
this is the abstract definition of a routine. A client
of the class and routine must know that the first
int represents a ‘count of apples’, etc. It is true
that well known routines might not require a
name, for example sqrt (int). But this is not
appropriate for large scale software development.
The use of anonymous parameters handicaps the
purpose of abstract descriptions of classes and
members: to facilitate the reusability of software.
Program text captures the meaning of the system
for some future activity, such as extension or
maintenance. To achieve reusability,
communication of intent of a software element is
essential. A compiler strips away this level of
communication, producing a machine executable
entity. Languages and compilers that perform less
than optimal translations should not penalise
careful production of semantic entities. But
neither should a language definition allow less
than optimal expression to the human reader.
Languages do not have to be cryptic to achieve
efficiency. In fact cryptic languages impair
efficiency, as they make it harder for the pro-
grammer to develop efficient systems, and
furthermore, they make it harder for automatic
code optimisers.

3.8. ‘.’ and ‘->’
The ‘.’ and ‘->’ member access syntax came

from C structures. It illustrates where the C base
adversely affects flexibility. Semantically both
access a member of an object. They are, however,
operationally defined in terms of how they work.
The dot (‘.’) syntax accesses a member in an
object directly. For example ‘x.y’ means access
the member y in the object x.

obj x; // declare object x of
 // class obj
 // with a member y.

x.y; // access y in object x
 // directly
x->y; // syntax error “. expected”

The ‘->’ syntax means access a member in an
object referenced by a pointer. For example ‘x->y’
(or the equivalent *(x).y) means access the
member y in the object pointer x refers to . Names are not strictly necessary in

programming. Naming exists to help the human
reader identify different entities within the
program, and to reason about their function. For
this reason naming is essential. Without naming,
development of sophisticated systems would be
nearly impossible. Some languages access
parameters by their address (position) in the
parameter list ($1, $2, etc). This is quite
unsatisfactory, even for shell scripts. Anonymous
parameters can save typing in a function template,
but then programming is not a matter of conve-
nience. This is inconvenient for later readers. The
redundancy is beneficial and saves later
programmers having to look up the information in
another place. A real convenience in function
templates would be that abstract function
templates be automatically generated from the
implementation text (see header files for more
details).

obj *x; // declare a pointer x to an
 // object of class obj.

x->y; // access y via pointer x
x.y; // syntax error “-> expected”

In this example, ‘what’ is to be computed is
“access the element y of object x.” In C++,
however, the programmer must specify for every
access the trivial detail of ‘how’ this is done. The
compiler can easily remove this burden from the
programmer, as in fact most languages do.
Furthermore, this reduces flexibility as if the ‘obj
x’ declaration is changed to ‘obj *x’, the effect is
widespread as all ‘x.y’ must be changed to ‘x->y’.
Since the compiler gives a syntax error if the
wrong access is used, this shows it already knows
what access code is required and can generate it
automatically. Good programming centralises
decisions. The decision to access the object
directly or via a pointer should be centralised in
the declaration.

Anonymous parameters illustrate the link
between courtesy and safety issues in
programming. Due to pressure of work, a client
programmer might wrongly guess the purpose of a
parameter from the type. Thus the failure of the
original programmer to provide a courtesy has

C++?? 2nd Edition page 10

caused a later programmer to breach safety. An
interface client must know the intention of the
interface for it to be used effectively.

3.12. Optional Parameters
Optional parameters that assume a default

value according to the routines declaration are
supposed to provide a shorthand notation.
Shorthand notations are intended to speed up
software development. Such shorthand notations
can be convenient in shell scripts, and interactive
systems. In large scale software production,
however, precision is mandatory, and defaults can
lead to ambiguities and mistakes. With optional
parameters the programmer could assume the
wrong default for a parameter. More importantly,
optional parameters undermine type safety. The
type of a function is defined by the composition
of its input types, and its output type:

3.10. Nameless Constructors
Multiple constructors can have different

signatures, similar to overloaded functions. This
precludes two or more constructors having the
same signature. Constructors are also not named
(apart from the same name as the class). This
makes it difficult to discern from the class header
the purpose of the different constructors. It is
difficult to match an object creation with the
called constructor. Constructors suffer from all of
the problems described with regards to functions
with the same name but different signatures. It
would be easy to mark routines as constructors,
for example:

f: T1 x T2 x T3... -> T4

The entire signature determines the type of the
function, not just the return type. Optional
parameters mean that C++ is not type safe, and
that the compiler cannot check that the parameters
in the call exactly match the function signature.

constructor make (...)...
constructor clone (...)...
constructor initialise (...)...

Furthermore, they do not provide a great deal
of convenience. If a routine has five parameters,
the last three of which are optional, and caller
wants to assume the defaults for parameters 3 and
4, but must specify parameter 5, then all five
parameters must be specified. A better scheme
would be to have a ‘default’ keyword in function
calls:

where each constructor leaves the object in
valid, but potentially different states. Named
constructors would aid comprehension as to what
the constructor is used for in the same way as
function names document the purpose of a
function. Secondly, named constructors would
allow multiple constructors with the same
signature. Thirdly, it is easier to match up an
object creation with the constructor actually
called.

f (a, b, default, default, e);

Other means, already in the language, can
easily provide this mechanism. For example, a
call to another (possibly inline) function could
provide the defaults for the optional parameters.
This not only provides the convenience of
optional parameters, but is more powerful. Any
parameter or combination can be filled in with any
combination of defaults, not just the last
parameters. Multiple intermediate routines can
provide multiple sets of defaults.

3.11. Constructors and Temporaries
A ‘return <expression>’ can result in a

different value than the result of <expression>. In
section 6.6.3, the C++ ARM says “If required the
expression is converted, as in an initialisation, to
the return type of the function in which it appears.
This may involve the construction and copy of a
temporary object (S12.2).”

Section 12.2 explains “In some circumstances
it may be necessary or convenient for the compiler
to generate a temporary object. Such introduction
of temporaries is implementation dependent.
When a compiler introduces a temporary object of
a class that has a constructor it must ensure that a
constructor is called for the temporary object.”

3.13. Bad deletions
The following example is given on p.63 in the

C++ ARM as a warning about bad deletions that
cannot be caught at compile-time, and probably
not immediately at run-time:

A note says “The implementation’s use of
temporaries can be observed, therefore, through
the side effects produced by constructors and
destructors.”

p = new int[10];
p++;
delete p; // error
p = 0;

Putting this together, creation of a temporary
is implementation dependent, so might or might
not be done. If a temporary is created, a
constructor is called as a side effect, which can
change the state of the object. Different C++
implementations could therefore return different
results for the same code.

delete p; // ok

One of the restrictions of the design of C++ is
that it must remain compatible with C. This
results in examples like the above, that are ill-
defined language constructs, that can only be
covered by warnings of potential disaster.
Removal of such language deficiencies would
result in loss of compatibility with C. This might

C++?? 2nd Edition page 11

be a good thing if problems such as the above
disappear. But then the resultant language might
be so far removed from C that C might be best
abandoned altogether.

data. Friend is a ‘limited export’ mechanism.
Friends have three problems:

1) They can change the internal state of
objects from outside the definition of the class.

2) They introduce extra coupling between
components, and therefore should be used
sparingly.

3.14. Local entity declarations
Declaring an entity close to where it is used,

has both advantages and disadvantages. It is
convenient, but can make a routine appear more
complex and cluttered. A problem is that an
identifier can be mistakenly overloaded within a
nested block in a function, with the resultant
problems covered in the sections on name
overloading and nesting. C does not have nested
routines or blocks so does not have this problem.
ALGOL uses this simple form of name
overloading. (A block in the ALGOL sense
contains both declarations and instructions.)

3) They have access to everything, rather
than being restricted to the members of interest to
them.

Friends are useful, and a case can be made for
shades of grey between public, protected and
private members. Multiple interfaces to a class
provide the functionality of friends and avoid the
above problems. Each interface to the class can be
exported to everything, or selected classes only. A
selective export mechanism is more general than
public, private, protected and friend, and
explicitly documents the couplings between
entities in the system. Selective export specifies
not only that a member is exported but to which
classes it is exported.

The ARM explains problems of local
declarations with branching, which shows the
complications in intermingling declarations and
instructions. Caveats cannot make up for or fix
faulty language definition.

One reason given for friends, is that they
allow more efficient access to data members than
a function call. The way C++ is often used is that
data members are not put in the public section,
because this breaks the data hiding principle.

The C++ FAQ [Cline] (Q83) is unclear on this
point (although it is mostly excellent), claiming
that an object is created and initialised at the
moment it is declared. This only applies to auto,
in stack objects. Dynamic entities are not created
and initialised until they are the subject of a ‘new’
instruction. In well written object-oriented
software, routines will be small, typically
performing one atomic action per routine.

Data hiding is better described as
‘implementation hiding’. Only a classes abstract
functional interface should be visible to the
outside world. That is data members can be
exported, but are viewed externally as functional
entities. This is because, when used in
expressions, functions and variables have no
semantic difference. They both return values of a
given type. (See fn () for an explanation of why
variables and functions are best regarded as
similar entities.) (See also Marshall Cline’s
explanation of friends in the FAQ for further
clarification of the friend concept.)

Small routines that implement atomic
operations are fundamental to loose coupling. For
example, a base class that provides a single
routine that logically performs operations A and
B, is not useful to a subclass that needs to provide
its own implementation of B, but does not want to
change A. The descendant must reimplement the
logic of both A and B, missing an opportunity to
reuse the logic of A. Tight coupling reduces
flexibility. Splitting A and B into different
routines accomplishes loose coupling, and
therefore flexibility. Efficiency is also attained
without the mess of local entity declarations.
Good design and clean modularisation achieve
efficiency, as the entities which would be locals to
a block in C++ are only created when the routine
is entered.

The Cambridge Encyclopedia of Language
has an interesting point about public and private
names. It says “Many primitive people do not like
to hear their name used, especially in
unfavourable circumstances, for they believe that
the whole of their being resides in it, and they
may thereby fall under the influence of others.
The danger is even greater in tribes (in Australia
and New Zealand, for example), where people are
given two names - a ‘public’ name, for general
use, and a ‘secret’ name, which is only known by
God, or to the closest members of their group. To
get to know a secret name is to have total power
over its owner.”

3.15. Members
Care should be taken with the C++ use of the

term member. In general use, an object is a
member of a class. This corresponds to members
in set theory. But in C++, the term member means
a data item, or function of the class. This
ambiguity could have easily been avoided. 3.17. Static

The word ‘static’ is confusing in C++. Page
98 of the C++ Annotated Reference Manual
(ARM) mentions this confusion and gives two
meanings. Firstly, a class can have static

3.16. Friends
Friends are a mechanism to override data

hiding. Friends of a class have access to its private

C++?? 2nd Edition page 12

members, and a function can have static entities.
The second meaning comes from C, where a static
entity is local in scope to the current file. The
choice of different keywords would easily solve
this trivial problem. There is also a third more
general meaning that objects are statically or
automatically allocated and deallocated on the
stack when a block is entered and exited, as
opposed to dynamically allocated in free space.

variants. Inheritance and polymorphism provide
this in OOP. A reference to a superclass can also
be used to refer to any subclass, and thus provides
the same semantics as union, only in a type safe
manner, as the alternatives can never be confused.
An object reference is implicitly a union of all
subclasses.

3.19. Nested Classes
Static class members are useful. Page 181 of

the ARM states that statics reduce the need for
global variables. It is good to reduce global
variables, but the C syntax obscures the purpose.

Simula provided textually nested classes
similar to nested procedures in ALGOL. Textual
(syntactic) nesting should not be confused with
semantic nesting, nor static modelling with
dynamic run time nesting. Modelling is done in
the semantic domain, and should be divorced
from syntax. You do not need textually nested
classes to have nested objects. Nested classes are
contrary to good object-oriented design, and the
free spirit of object-oriented decomposition,
where classes should be loosely coupled, to
support software reusability. Semantic nesting is
achieved independently of textual nesting. In
object-oriented design all objects should interact
only via well defined interfaces. Objects of a class
that is textually nested in another class have
access to the outer object without the benefit of a
clean interface. C avoided the complexity of
nested functions, but C++ has chosen to imple-
ment this complexity for classes, which is of less
use than nested functions.

Entities declared in functions can also be
static. These are not needed in an object-oriented
language. The reason and history is this. ALGOL
has the notion of ‘OWN’ locals in blocks. The
semantics of an OWN entity is that when a block
is exited, the value of the OWN is preserved for
the next entry to the block. I.e. the value is
persistent. The implementation is that at compile
time, the OWN entity is limited in scope to the
block, but at run time, it is located in the global
stack frame. The same instance of the variable is
used in all invocations of the procedure, rather
than each invocation using separate local storage
on the stack. This causes complication in recur-
sion.

Simula’s designers generalised the ALGOL
notion of block into class, and so object-
orientation was born. Instead of discarding a class
block on exit, it is made ‘persistent’. Declarations
within the class block are persistent, and therefore
provide the functionality of static and OWN.
Classes are more flexible than statics. Statics are
persistent in the same way as globals, ie for the
duration of the program. Class member lifetime is
governed by the lifetime of the object. Object-
oriented languages do not need OWNs or statics.

OOP achieves nesting in two ways: by
inheritance and object-oriented composition. Thus
modelling nesting is achieved without tight
textual coupling. For example, consider a car. We
know in the real world that the engine is
embedded within the car. In object-oriented
modelling, however, this embedding is modelled
without textual nesting. Both car and engine are
separate classes. The car contains a reference to an
engine object. This also allows the vehicle and
engine hierarchy to be independently defined.
Engine is derived independently into petrol,
diesel, and electric engines. This is simpler and
more flexible than having to define a petrol engine
car, a diesel engine car, etc, which you have to do
if you textually nest the engine class in the car.
Other examples can also be structured without
textual nesting, and no loss of generality.

3.18. Union
Union is another construct that is superfluous

in OOP. Similar constructs in other languages are
recognised as problematic. For example,
FORTRAN’s equivalences, COBOLs
REDEFINES, and Pascal’s variant records. When
used to overload memory space these force the
programmer to think about memory allocation.
Recursive languages use a stack mechanism that
makes overloading memory space unnecessary, as
it is allocated and deallocated automatically for
locals when procedures are entered and exited.
The compiler and run time system automatically
allocate and deallocate storage as required,
ensuring that two pieces of data never clash for
the same memory space. This is essential so that
the programmer can concentrate on the problem
domain, rather than machine oriented details.
When union is used similarly to FORTRAN’s
equivalences it is not needed.

In C++, not only can classes be nested within
other classes, but also within functions, thereby
tightly coupling a class to a function. This
confuses class definition with object declaration.
The class is the fundamental structure in object-
oriented programming and nothing has existence
separate from class (including globals). C++ is
confused as to whether it is procedure-oriented or
object-oriented.

3.20. Global Environments
The global environment provides a special

case of nested classes. When classes are nested in
a global environment, dependencies can arise that

Union is also not needed to provide the
equivalent to COBOL REDEFINES or Pascal’s

C++?? 2nd Edition page 13

make the classes difficult to decouple from that
environment, and therefore not reusable. Even if a
class is not intended for use in another context, it
will benefit from the discipline of object-oriented
design. Each class is designed independently of
the surrounding environment, and relationships
and dependencies between classes are explicitly
stated.

header B also includes header C. A simple but
messy fix in all headers solves this problem:

#ifndef thismod
#define thismod

... rest of header
#endif

Headers show how C++ addresses the
problem of independent modules by a non-object-
oriented approach that is sub-optimal; the
programmer must supply this bookkeeping
information manually. A class interface is
equivalent to a module header. A module header
contains data and routines exported to other
modules. This is exactly the purpose of the class
interface. A class definition contains all
knowledge of component classes and their
dependencies (inheritance and client) in the class
text. Dependency analysis is derivable from the
class text. Tools like ‘make’ can be integrated into
the compiler itself, and the errors and tedium
encountered in the use of ‘make’ are avoided.
#includes relate to the organisation and
administration of a project. Rational language de-
sign eliminates such bookkeeping mechanisms.

In C++ functions can change the global
environment, beyond the object in which they are
encapsulated. Such changes are side-effects that
limit the opportunity to produce loosely-coupled
objects, which is essential to enable reusable
software. This is a drawback of both global and
nested environments.

A good OO language will only permit routines
in an object to change its state. Removing the
global environment is trivial. It is simply
encapsulated in an object or set of objects of its
own. Therefore global entities are subject to the
discipline of object-oriented design. Having
globals in a system circumvents OOD. Objects
can also provide a clean interface to the external
environment, or operating system, without loss of
generality, for a negligible performance penalty.
Thus classes are independent of a surrounding
environment, and the project for which they were
first developed, and are more easily adaptable to
new environments and projects.

A traditional system is assembled by
combining modules. An object-oriented system is
assembled by combining classes. Modules are a
primitive form of classes. Classes are more
sophisticated. They express more precisely
relationships with other classes. C++ #includes
and modules have problems. This primitive
method is not required in an object-oriented
language.

3.21. Header Files
In C++ a class interface must be maintained

separately from its body. While an abstract
interface should be distinct from a concrete
implementation, the interface and implementation
can both be derived from one source. In C++
though, programmers must maintain the two sets
of information. Replicated information has well
known drawbacks. In the event of change, both
copies must be updated. This can lead to
inconsistencies that must be detected and
corrected. Tools can automatically extract abstract
class descriptions from class implementations,
and guarantee consistency.

3.22. Class Interfaces
Section 9.1c of the C++ ARM points out that

C++ has no direct support for “interface
definition” and “implementation module”. In a
C++ class definition, all private and protected
members must be included in the public text of
the class. The ARM points out that whenever the
private or protected parts are changed, the whole
program must be recompiled. Further to what the
ARM says, all modules that are dependent on the
header file must be recompiled, even though the
private and protected members do not affect other
modules. Private members should not be in the
abstract class interface, as this exposes
implementation details to programmers of other
modules.

The programmer must also use #includes to
manually import class headers. #include is an old
and unsophisticated mechanism to provide
modularity. #include is a weak form of inheritance
and import. C++ still uses this 30 year old
technique for modularisation, while other
languages have adopted more sophisticated
approaches, for example, Pascal with Units,
Modula with modules, Ada with packages. In
Eiffel the unit of modularisation is the class itself,
and includes are handled automatically. The OOP
class is a more sophisticated way to modularise
programs. Inheritance implements reusability and
modularisation, so #include is superfluous.

3.23. Class header declarations
C’s syntax for function declarations is

[<type>] <identifier> (<parameters>). For (a very
simple) example:

class C
Another problem is that if header A includes

header B, and header B includes header A a
circular dependency occurs. The same problem
occurs if header A includes headers B and C, and

{
a ();
b ();

C++?? 2nd Edition page 14

int c (); In C++ the programmer must manually
manage storage due to the lack of garbage
collection. This is a difficult bookkeeping task
that leads to two opposite problems. Firstly, an
object can be deallocated prematurely, while valid
references still exist (dangling pointers).
Secondly, dead objects might not be deallocated
leading to memory filling up with dead objects
(memory leaks). Attempts to correct either
problem can lead to overcompensation and the
other problem occurring. A correct system is a
fine balance. This is illustrated in the figure
below.

d ();
char e ();
virtual void f ();

}

To find an identifier in this layout, the eye
must trace a course around the type specifications.
This is a tiring activity. The eye has a greater
chance of missing the sought identifier, and the
programmer must resort to using the search
function of a text editor to help out.

Other languages place the entity names first.
For example:

Dangling
Pointers

Correct
System

Memory
Leaksclass C

{
a (); These problems contribute to the fragility of

C++ programs, and usually result in system
failure. Garbage-collection solves both problems.
Garbage-collection has an undeserved bad
reputation due to some early garbage-collectors
having performance problems, instead of working
transparently in the background, as they can and
should. These problems are often over-
emphasised as a justification for C++ ignoring
garbage collection. A possible solution is to build
garbage collection into the run time architecture,
but allow the programmer to activate and
deactivate it manually. Garbage collection can be
disabled in systems where it is inappropriate.

b ();
c () int;
d ();
e () char;
f () virtual void;

}

To those used to the ALGOL and FORTRAN
style of type first, this seems backwards. But
name first is logical as a real world example
illustrates. Imagine if a dictionary is published,
and the keywords are not placed first, but rather
the entry order is -

In C++ it might be argued that the lack of
garbage-collection is not an engineering
compromise. Its inclusion is nearly an engineering
impossibility, as a programmer can undermine the
structures required for implementing correctly
working garbage-collection. While garbage-
collection might not actually be an impossibility
in C++ (EC++), it is difficult, and programmers
would have to settle for a more restricted way of
programming. This could be a good thing. But
then the compromise to remain compatible with C
becomes difficult, if the compiler is to detect
practices inconsistent with the operation of
garbage-collection.

noun /obvrzen/ obversion, the act or
 result of obverting

Such a dictionary would not sell many copies,
unless the marketers managed to fool many
people that the explanation of the meaning was
more correct because the order of layout was
mysteriously magical. This example illustrates
how important subtle syntax decisions are, and
why PASCAL style languages might have ordered
things contrary to FORTRAN, ALGOL and
others. The language designer must consider these
trivial but important alternatives. The layout of
programming entities is essential for effective
communication. The dual roles of language
syntax, and programming style affect
comprehension. A dictionary or index style layout
suggests placing entity names first, followed by
their definition.

3.25. Type-safe linkage
The C++ ARM explains that type-safe linkage

is not 100% type safe. If it is not 100% type-safe,
then it is unsafe. It is the subtle errors that cause
the most problems, not the simple or obvious
ones. Often such errors remain undetected in the
system until critical moments. The seriousness of
this situation cannot be underestimated. Many
forms of transport, such as planes, and space
programs depend on software to provide safety in
their operation. The financial survival of
organisations can also depend on software. To
accept such unsafe situations is at best ir-
responsible.

3.24. Garbage Collection
One of the hallmarks of high level languages

is that programmers declare data without regard to
how the data is allocated in memory. In block
structured languages, local variables are allocated
on the stack, and automatically deallocated when
the block exits. This relieves the programmer of a
great burden. Garbage collection provides
equivalent relief in languages with dynamic entity
allocation.

C++?? 2nd Edition page 15

The C++ ARM summarises the situation as
follows - “Handling all inconsistencies - thus
making a C++ implementation 100% type-safe -
would require either linker support or a
mechanism (an environment) allowing the
compiler access to information from separate
compilations.”

methodology of choice of disciplined thinkers.
Some people can hold a whole problem and
solution in their head and work in a disciplined
fashion until the solution is complete. Mozart is
said to have composed this way, producing his
last three symphonies in as many months in 1788.
Beethoven toiled far more over the production of
his works, taking years to complete one
symphony. Both composers produced
masterpieces. Mozart wrote music directly,
whereas Beethoven wrote themes and ideas in his
famous sketchbooks. The production of
masterpieces depends on skill, not on method-
ologies.

So why does the C++ compiler (at least
AT&T’s) not provide for accessing information
from separate compilations? Why is there not a
specialised linker for C++, that actually provides
100% type safety? There is no reason why C++
should not be implemented this way. Building
systems out of preexisting elements is the
common Unix style of software production. This
implements a form of reusability, but not in the
truly flexible manner of object-oriented
reusability.

It is becoming accepted that the software
lifecycle should be an integrated process.
Analysis, design and implementation should be a
seamless continuum.The activities of the lifecycle
should progress in parallel to expedite software
development. Facts found out only as late as the
implementation stage can be fed back into the
analysis and design stages. The object-oriented
approach supports this process. Artificial
separation of the steps leads to a large semantic
gap between the steps. The transformations
required to bridge such semantic gaps are prone to
misinterpretation, time consuming and costly.

In the future, Unix could be replaced by
object-oriented operating systems, that are indeed
‘open’ to be tailored to best suit the purpose at
hand. By the use of pipes and flags, Unix software
elements can be reused to provide functionality
that approximates what is desired. This approach
is valid and works with efficacy in some
instances, like small in-house applications, or
perhaps for research prototyping, but is
unacceptable for widespread and expensive
software, or safety critical applications. In the last
ten years the advantages of integrated software
have been acknowledged. Classic Unix systems
don’t provide those advantages. Integrated sys-
tems are more ambitious, and place more demands
on developers. But this is the sort of software now
being demanded by end users. Systems that are
cobbled together are unacceptable.

 The same people should be responsible for all
stages. This way they take responsibility for the
system as a whole, rather than passing the buck
and blame which occurs when analysts, designers
and implementers are different groups. This is not
a popular viewpoint in traditional hierarchical
management structures where programmers get
promoted to designers who get promoted to
analysts. Hierarchical management also
discourages people from feeling responsible for a
product. This culture must radically change if we
are to produce quality systems.

A further problem with linking is that
different compilation and linking systems should
use different name encoding schemes. This
problem is related to type-safe linkage, but is
covered in the section on ‘reusability and
compatibility’.

We should have learnt from the extremes
SA/SD. Some quarters believed that methodology
was all important, while programming and
programming languages were unimportant.
Arcane and machine-oriented programming
languages strengthened this attitude. These
languages concentrate on the ‘how’ of
computation, whereas the modellers correctly
demand notations that express the ‘what’, in order
to be implementation independent. A modern
software language supports the integration of the
activities of design and implementation by being
readable, and problem-oriented. A language
should be as close to design as possible. The
needs and requirements of an enterprise can
change much more rapidly than programmers can
keep up, especially in a highly competitive and
commercial world.

3.26. C++ and the software lifecycle
The software lifecycle has attracted a great

deal of attention. It is at least generally accepted
that the activities in the lifecycle are analysis of
requirements, design, implementation, testing and
error correction, extension. Unfortunately, the
result of identifying these activities has resulted in
a school of thought that the boundaries between
these activities are fixed, and that they should be
systematically separate, each being completed
before the next is commenced. It is often argued
that if they are not cleanly separated, then you are
not practicing disciplined system development.

This view is incorrect. Someone who writes a
program straight away is actually doing all the
steps in parallel. It might not be the best way do
do things in many circumstances, might or might
not suit the style and thinking of different people,
but this works in some scenarios, and can be the

So how does C++ fit into this picture? Well it
is based on C that was designed mainly as an
implementation and machine-oriented language. It
is an old language, that did not need to consider
the integrated lifecycle approach. C++ might have

C++?? 2nd Edition page 16

some of the trappings of object-oriented concepts,
but it is the marriage of a problem-oriented
technique with a machine-oriented language. It
addresses implementation, but not so well the
other aspects of the software lifecycle. Since C++
is not so well integrated with analysis and design,
the transformation required to go from analysis
and design to implementation is costly. The
semantic gap between design languages and the
implementation language is great.

software component, require assurance that the
component is trustworthy. Trusting programmers
is against the commercial interest of both parties.
This is not to cast dispersion on programmers, but
merely recognises that computers are good at
performing mundane tasks and checks, but people
are not. If people were good at such things, we
would not need computers in the first place.
Building trustworthy components is a safety
concern.

We should have learnt from the structured
world that this is the incorrect approach to the
software lifecycle. But in the OO world we are
again falling into the trap of dividing the lifecycle
into artificially distinct activities of OOA, OOD
and OOP, instead of adopting an integrated
approach to these. Modern languages provide a
much more integrated approach to the complete
software development process than C++. C++
supports classes and inheritance and other
concepts of object-orientation, but fails to address
the entire software lifecycle.

3.29. Reusability and Compatibility
Different compiler implementations need to be

compatible in order to realise reusability between
components. Different C++ compilers generate
different class layouts, virtual function calling
techniques, etc. The name encoding schemes used
for type safe linkage can also be different. If two
different compilers generate different run-time
organisations, then different name encodings are
desirable as it will prevent two incompatible
libraries from being linked. The C++ ARM (p122)
states “If two C++ implementations for the same
system use different calling sequences or in other
ways are not link compatible it would be unwise
to use identical encodings of type signatures.”

3.27. Reusability and Communication
Reusability is a matter of communication.
In order to use a software component, you

must be able to understand it. The writer must
communicate the purpose, intent, and correct
usage of the component to the client. In the
object-oriented world, clear and concise definition
of software modules is not a mere nicety, but
essential for reusability. Arising out of the issue
of reusability is extendibility. In order to
maximise the reuse of software, it often must be
tailored for new applications. The client
programmer must decide whether the software
component is suitable for the new task. If so, what
is the best way to extend it? Clear communication
to clients is a courtesy concern.

This can be solved in two ways. Firstly, a
library vendor could provide the entire source of a
library so it can be compiled by the customers
compiler. This is not satisfactory if the sources are
proprietary. Then the vendor will need a separate
release for every environment, and every compiler
in that environment.

Because of this problem a strong case exists
for a universal intermediate machine readable
representation of programs. Interestingly, some
systems are already using C as a ‘universal
assembler’, notably AT&T C++ and Eiffel. But
this cannot solve the above problems of
compatibility between components without a
standardisation effort on run time layouts and
name encoding schemes.

3.28. Reusability and Trust
Reusability is a matter of trust.
Trust results from confidence that safety

concerns have been met. If you do not have
confidence in a software component, then it is
difficult to consider it for reuse. There could be
doubt that the software component provides
enough functionality, or correct functionality.
There could be doubt that the component is
efficient enough, or worse it might crash. The
C/C++ philosophy of not building checks into the
language and compiler because programmers can
be trusted, works against trust and reusability.

3.30. Reusability and Portability
Since true OOP ensures that objects are

loosely coupled to the external environment,
portability to diverse environments is possible. C
is tightly coupled to the Unix environment, and as
such is not particularly portable to diverse
environments.

3.31. Idiomatic Programming
The ability to program in different idioms is

argued as a strength of C++. Idiomatic
programming, however, is a weak form of
paradigmatic programming. It is programming in
a paradigm without necessarily having compiler
support for that paradigm. The compiler cannot
check for inconsistencies with the idiom, or
paradigm. Defines can often be used to invent
idioms. Anyone who has attempted to do object-

In the real world of reusability, the ideal of
trusting programmers is inappropriate. Trusting
programmers results in less trustworthy software.
In reality, customers doubt the claims of
suppliers. It is the onus of the supplier to prove
their claims, and thus trustworthiness of the
software. The client is not required to trust the
supplier’s programmers. Potential clients of a

C++?? 2nd Edition page 17

oriented programming in a conventional language
using defines will realise that it is impossible to
realise all the benefits easily, if at all, without
compiler support.

Object level is natural for the programmer,
and has the advantage that a programmer can
implement a system without taking into account
parallel processing at all. The same program will
run and produce identical results irrespective of
whether the customer is running a single
processor, or a processor array.

3.32. Concurrent Programming
In the next ten years multiple processor arrays

that execute programs concurrently will probably
become common. Concurrency requires much
cleaner languages, than the single processor
languages of today. Object-oriented concepts
support concurrent programming. Objects can
execute state changing code independently of each
other. Concurrent programming will be enabled
by the division of the state space of a system into
modules to achieve a high degree of independent
processing. Objects provide a scheme to cleanly
divide state spaces. The demand that everything
be broken down into loosely coupled modules,
that only interact through well defined interfaces
might be perceived as inefficient. But it is
precisely this scheme that will mean that
concurrent solutions can be developed efficiently
and transparently to the programmer. Concurrency
should be transparent to the programmer, as
concurrency is a low level implementation
consideration. That is concurrency is how a
computation is done, not what is to be computed.
The programmer should be concerned with what
is to be computed, not how. How something is
computed is the concern of the target
environment, ie the compilers, operating system,
and hardware. When programmers are not
concerned with this level, efficiency and
portability follow automatically.

Side effects must be avoided in concurrent
systems. Suppose a computation depends on
combining the results of two functions f and g,
such as f + g. If f and g are independent, then they
can be computed concurrently. If however, f
produces side effects that g depends on, they must
be computed sequentially. F and g are parameters
to the + function. Routine parameters can be
computed concurrently, as long as the
computation of each causes no side effects. Side
effects are avoided by restrictive practices that C
devotees would object to.

C++ does not preclude the use of a global
environment. Access to shared global data
potentially causes a thread to lock, and if many
such accesses occur, the advantage of concurrency
is lost. This is because updates to a global
environment are side effects. Programming in
such an environment requires complex locking
mechanisms to ensure that things happen in the
correct order. Locks are rather like waiting for a
plane to take off when it has to wait for another
connecting flight. This cannot be entirely avoided,
but should be reduced as much as possible.

4. The role of Language
For an intermission between sections, I’ll

mention some interesting points that the
Cambridge Encyclopedia of Language [Crystal
87] makes. It says that language is an emotional
subject. “It is not easy to be systematic and
objective about language study. Popular linguistic
debate regularly deteriorates into invective and
polemic. Language belongs to everyone; so most
people feel they have a right to hold an opinion
about it. And when opinions differ, emotions can
run high. Arguments can flare over minor points
of usage as over major policies of linguistic
planning and education.”

The aim of concurrent processing is to keep
all the processors in a processor array as fully
utilised as possible, so that processor resources are
not wasted. This is as good as can be expected.
There is nothing more mysterious to concurrent
programming than the efficient use of resources.
Keeping all processors busy is an inherently
dynamic problem, which the programmer cannot
determine statically at compile time. All the
processors can be kept busy, as long as there are
enough threads in the system.

In concurrent programming, a thread is a unit
of sequential execution. Concurrency is achieved
by the splitting of threads. A thread can be split
when a state changing routine is invoked, but not
a value returning function, because it must wait
for the value. State changing routines can easily
be invoked on another processor. Object level
granularity seems to be a natural candidate for
concurrent processing. An object can have only
one update thread at a time to avoid simultaneous
update problems. Other levels of concurrency are
instruction level, and task or process level. Task
or process level is the level used in conventional
multi-processing systems currently commercially
produced, and instruction level is quite difficult,
best being left to instruction pipelines.

While natural language is difficult to be
“systematic and objective about”, should this
apply to computer languages? The definition of
natural language is generally beyond our control,
with the exception of languages such as
Esperanto. Programming language definition,
however, is within our control. Programming
languages must have expressiveness like natural
language, yet be precise and semantically
consistent. As programming languages have
rigorous requirements, we should be even more
critical and objective about them. It is a measure
of immaturity in the programming profession that
emotional and irrational defensiveness often
denies valid criticism. Many dismiss the choice of

C++?? 2nd Edition page 18

programming language as a religious issue. If
language choice is merely religious, then we
might as well still program in assembler, or
maybe even binary, because the adoption of high
level languages would have no technical merit.
Language choice, however, is a technical
consideration. Technical measures should judge
the effectiveness of a language. Understanding the
role of language helps quantify what must be
measured.

sent from one object to another, so that they can
communicate and interact. Static binding
determines this message in advance as the
receptor is always the same type, or descendant of
that type. Static typing ensures in advance that the
receptor object can process the message. Dynamic
binding, means that the exact message to be sent
is determined by the dynamic type of the receptor
when the message is actually sent. For example,
on your telephone, you talk to your friends
differently than a client, even though you are
using the same piece of equipment. These are the
concepts that C++’s virtual do not express well.
Designing an object-oriented system is like
designing a language by which objects interact.
Thus tools used for formal programming language
design, BNF, denotational semantics, and
axiomatic semantics can help in the design of an
object-oriented system.

The Cambridge encyclopedia lists several
functions of language. “To communicate our
ideas”, it says is the most common answer, and
this must surely be the most widely recognised
function of language. It lists several other
functions of language. One function is emotional
expression. For instance, when we stub our toe,
we often emit words, even when there is no one to
hear. Another is social interaction. For example if
someone sneezes, we often “bless” them. Another
is the power of sound, as in poetry and rhyming
jingles etc. Another is the control of reality, as in
spells and incantations. Perhaps computer
programs and spells are similar in purpose.
Another is recording facts. This includes record
keeping, historical and geographical documents,
etc. Another is the instrument of thought. We
often reason about things to ourselves in
language. Another function is the expression of
identity. Language can express who we are, or
affirm our belonging to certain groups. Perhaps
the most important role of computer languages is
to enable description, and recording the decisions
made during the design and implementation of a
system.

“Language shapes the way we think, and
determines what we can think about.” -
B.L.Whorf. Bjarne Stroustrup quotes this in “The
C++ Programming Language”. But is this correct?
The encyclopedia says, “It seems evident that
there is the closest relationship between language
and thought: everyday experience suggests that
much of our thinking is facilitated by language.
But is there identity between the two? Is it
possible to think without language? Or does
language dictate the ways in which we are able to
think? Such matters have exercised generations of
philosophers, psychologists, and linguists, who
have uncovered layers of complexity in these
straightforward questions. A simple answer is
certainly not possible; but at least we can be clear
about the main factors which give rise to
complications.”

Since language and communication are two
closely related concepts, it is important to
understand their relationship, and the nature of
communication. Language is the set of aural and
written symbols with which we communicate.
Laurence Wylie in the foreword to “French in
Action” [Capretz 87] describes communication as
“To understand this [communication] we must
know the basic meaning of the words common,
communicate, and communication. They are
derived from two Indo-European stems that mean
“to bind together.” In this ordered universe, no
human being can live in isolation. We must be
bound together in order to participate in an
organised effort to accomplish the necessary
activities of existence. This relationship is so vital
to us that we must constantly be reassured of it.
We test this connection each time we have contact
with each other.”

The above Whorf quote is a statement of the
Sapir-Whorf hypothesis on language and thought.
Edward Sapir (1884-1939) formulated this with
his pupil Benjamin Lee Whorf (1897-1941). It
reflects the view of its day when great value was
placed on the diversity of the languages and
cultures of the world. The Sapir-Whorf hypothesis
combined two principles. The first is ‘linguistic
determinism’, which states that language
determines the way we think. The second,
‘linguistic relativity’, that the distinctions found in
one language are not found in any other. There
can be both verbal and non-verbal thought;
following a road map in a car for example. Street
directions are often difficult to put into words.

The Sapir-Whorf hypothesis in its strongest
form, as in the Whorf quote, is now not generally
accepted. For one reason, it is known that
concepts can be translated from one language into
another. This is even if in one language, the
concept can be expressed in one word, but takes a
phrase of words in another. A weaker version of
the Sapir-Whorf hypothesis is accepted. That is
“language may not determine the way we think,
but it does influence the way we perceive and

The concept of binding is also important in
computing. In networks, binding establishes
communication links between two or more
entities. This forms a greeting, so that a
relationship is established, and communication is
possible. In programming we have the concepts of
static and dynamic binding. Binding in this
paradigm makes it possible for a message to be

C++?? 2nd Edition page 19

remember, and it affects the ease with which we
perform mental tasks. Several experiments have
shown that people recall things more easily if the
things correspond to readily available words and
phrases. And people certainly find it easier to
make a conceptual distinction if it neatly
corresponds to words available in their language.
Some salvation for the Sapir-Whorf hypothesis
can therefore be found in these studies, which are
being carried out within the developing field of
psycholinguistics.”

Elements of Style,” [S & W 79]. This has been
around for most of this century in one form or an-
other. William Strunk, the original author had
some stern advice for his students:

“Vigorous writing is concise. A sentence
should contain no unnecessary words, a paragraph
no unnecessary sentences, for the same reason that
a drawing should have no unnecessary lines and a
machine no unnecessary parts.”

The machines that the software professional
develops are not built, but written. Strunk’s last
sentence prompts consideration of the relationship
of writing to software development. A common
situation is taking several thousand lines of
incomprehensible ‘code’, and making it execute
efficiently. After spending considerable time we
often realise what the program does, and reduce it
to several hundred lines of program ‘text’ that
runs ten times faster. Strunk’s quote should be
applied to programming. A routine should contain
no unnecessary declarations or instructions, a
system no unnecessary routines. It can also be
applied to programming languages. A pro-
gramming language should contain no
unnecessary constructs. This is the root of my
dissatisfaction with C++. Much of it is
unnecessary, even for the most complex systems.
Its syntax is ugly. C++ has become what the C
world has constantly criticised in languages like
PL/1 and Ada. Only C++ is worse. We need to
regain artistic elegance and simplicity.

The important question to the programming
community is do programming languages ‘shape’
the way we think about and design systems? The
negative argument is that it is the concepts behind
languages that are important, not the languages
themselves. Languages only provide a framework
for the expression of the concepts. A language can
only be as good as the concepts it implements. A
programming language influences the way we
program, and the way we use the concepts it
implements. It can clarify the concepts, or obscure
them as in the case of C++. A language must
implement the concepts cleanly and simply. It
must express the concepts in as few words and
constructs as possible. But this does not just mean
avoiding keywords as in C. Programmers who un-
derstand the concepts should have no difficulty in
adapting to different languages, as long as the new
language implements the concepts elegantly.

A language can be judged like a wine
connoisseur judges wine, by holding it up to the
light to judge for clarity and colour. Ultimately, it
is the taste that matters, but good colour and
clarity suggests that the taste is more likely to be
good. Clear programming language definition
helps in the goal of the production of quality soft-
ware.

6. Generic C criticisms
These criticisms apply to the C base language,

but in general adversely affect C++. R.P.Mody
[Mody 91] gives an excellent general criticism of
C. He says that to properly understand C you
must understand the insides of the compiler. He
gives many examples of how C obscures rather
than clarifies software engineering. He concludes
that he is “appalled at the monstrous messes that
computer scientists can produce under the name of
‘improvements’. It is to efforts such as C++ that I
here refer. These artifacts are filled with frills and
features but lack coherence, simplicity,
understandability and implementability. If
computer scientists could see that art is at the root
of the best science, such ugly creatures could
never take birth.”

So where does this leave Sapir-Whorf with
respect to programming languages? Programming
languages do not shape the way we think. It is the
concepts that shape the languages, and it is the
way we think that shapes the concepts. Those who
have attempted to learn a language in order to
learn object-oriented programming realise that it
is the concepts which must be grasped in order to
be effective. Once the concepts have been learnt,
object-oriented programming seems a natural way
to program. It matches very effectively the way
we think. If C++ has been designed according to
the Sapir-Whorf hypothesis, its philosophical
basis does not serve a computer industry that
should shape tools best suited to its purposes,
processes, thinking, and concepts.

C’s popularity is based on several myths.
Firstly, that it is a high level language. It is not. It
is a structured assembler oriented towards the low
level machine domain, not to the problem domain
of a high level language. Secondly, that it is small
and simple. Its semantics are not simple, but it is
very simple to make catastrophic errors. Thirdly,
that it is portable. Certainly compilers are
available on many platforms, but this does not
make programs portable, especially to diverse,
and future architectures. Platform independence
achieves portability. Fourthly, that it is efficient.

5. On Writing
During the development of this critique, I

realised it had grown larger than I had intended,
and that my writing style needed some polish for
such a large work. During my research, some
colleagues recommended a small book, “The

C++?? 2nd Edition page 20

What seems efficient on some platforms is the
very antithesis of efficiency on other platforms. It
seems efficient on certain platforms because it
allows the lower level machine-oriented
architecture to be visible at a higher level, instead
of being handled transparently by the compiler.
This means that programs will be locked into
certain styles of architecture, or into current styles
of technology, instead of protecting program
investment against future technological change.
And lastly, that the semantics are mathematically
rigorous. Anyone who reads the C++ ARM will
realise just how poorly defined the language is.
Anyone who has practiced C will know how
many traps there are to fall into.

handles transparent to the programmer. This is
similar to the Unisys A Series approach where
object ‘descriptors’ access the target object via a
master descriptor that stores the actual address of
the object. On the A Series this is transparent to
programmers in all languages, as this transparency
is realised at a level lower than languages. The A
series descriptor mechanism also provides
hardware safety checks that mean that pointers
cannot overrun, and arrays cannot be indexed out
of bounds. C cannot be implemented particularly
well on such machines, as C’s mechanisms are
lower level than the target environment.

Other environments do not provide object
relocation, so double indirection is an unnecessary
overhead. In order for programs to be portable and
to be at their most efficient in different target
environments, such system details should be the
concern of the target compilation system, not of
the programmer.

6.1. Pointers
C pointers are a low level mechanism that

should not be the concern of programmers.
Pointers mean the programmer must manipulate
low level address mechanisms, and be concerned
with lvalue and rvalue semantics, which are
machine oriented and not problem oriented as you
would expect of a high level language. A compiler
can easily handle such issues without loss of
generality or efficiency. Memory models of
different environments often affect the definition
of pointers. Memory model details such as near
and far pointers should be transparent to the
programmer.

C’s pointer declaration syntax causes another
small problem:

int* i, j;

This does not mean, as might be easily read -

int *i, *j;

but

int *i, j;
The programmer must also be concerned with

correct dereferencing of pointers to access
referenced entities. Use of pointers to emulate by
reference function parameters are an example. The
programmer has to worry about the correct use of
&s and *s. (See the section on function
parameters.)

and should be written thus to avoid confusion.

6.2. Arrays
Page 137 of the C++ ARM notes that C arrays

are low level, yet not very general, and unsafe.
Page 212 admits, “the C array concept is weak
and beyond repair.” Modern software production
is far less dependent on arrays than in the past,
especially in the object-oriented environment. The
trade off to be optimal, rather than general and
safe no longer applies for most applications. C
arrays provide no run-time bounds checking, not
even in test versions of software. This
compromises safety and undermines the semantics
of an array declaration, ie an array is declared to
be a particular size, and can only be indexed by
values within the given bounds. An index to an
array is a parameter in the domain of the array
function. An index out of bounds is not a member
of the domain, and should be treated as severely
as divide by zero. C has no notion of dynamically
allocated arrays, whose bounds are determined at
run time, as in ALGOL 60. This limits the
flexibility of arrays. The C definition of arrays
compromises both safety and flexibility.

Pointer arithmetic is error prone. Pointers can
be incremented past the end of the entities they
reference, with subsequent updates possibly
corrupting other entities. How many lurking and
undetected errors are in programs because of this?
This illustrates how C undermines OOP by
providing a mechanism where state outside an ob-
ject’s boundaries can be changed. Since pointers
are intrinsic to writing software in C this
exacerbates the problem. Pointers as implemented
in C make the introduction of advanced concepts
like garbage collection and concurrency difficult.

Another consideration is that dynamic
memory implementations vary between platforms.
Some environments make memory block
relocation easier by having all pointers reference
objects via a master pointer which contains the
actual address of the block. The location of the
master pointer never changes, so relocation of the
block is hidden from all pointers that reference it.
When the block is relocated, only the master
pointer needs to be updated.

One view of arrays is just another object-
oriented entity which should be treated in an
object-oriented manner as a class of data structure.
It should have interface definitions, and
consistency checks inherent in object-oriented
systems. Another view is that an array is an

On the Macintosh, for example, the double
indirection mechanism of ‘handles’ facilitates
relocation of objects. Object Pascal makes these

C++?? 2nd Edition page 21

implementation of a function, where pairs of
values explicitly map the domain to the range,
rather than being computed. This suggests that
Algol was incorrect in distinguishing arrays by
using square brackets. An array just maps the
input argument (the index) to a value of the type
of the array. An array can be viewed as a random
access stack.

inputs to outputs. Abstract data types can be used
to design such systems. Also this will help target
environments to increase parallelism and
concurrency in a way transparent to programmers.

In object-oriented programming, by reference
parameters are used to pass the original object, not
a copy. The called routine, however, cannot
change the state of the referenced object. Only
calling a routine in the objects interface can
change the state. This has the desired effect of the
object being given to you, without being yours to
change, although you can effect change in the
object.

[Ince 92] considers that arrays and pointers
need not be relied upon so heavily in modern
software production, as higher level abstractions
such as sets, sequences, etc are better suited to the
problem domain. Arrays, and pointers can be
provided in an object-oriented framework, and
used as low level implementation techniques for
the higher level data abstractions. As has already
been mentioned object-oriented programming is
very useful for the encapsulation of
implementation and environment oriented details.
Ince suggests that arrays and pointers should be
regarded in the same way as gotos in the
seventies. He suggests that languages such as
Pascal and Modula-2 should be regarded in the
same way as assembler languages in the seventies.
This applies even more to C and C++, because
pointers and arrays are far more intrinsic in the
use of C and C++.

C shares faulty parameters with many other
languages. The interaction of C’s pointer
mechanism with a faulty parameter mechanism,
however, makes C considerably worse than most
other languages. In C, pointers are used to
simulate by-reference parameters with by-value
parameters. The programmer must perform
tedious bookkeeping by specifying *s and &s for
referencing and dereferencing. Distinguishing
between by-value and by-reference parameters is
not just a syntactic nicety, included in most high
level languages, but a valuable compiler
technique, as the compiler can automatically
generate the referencing and dereferencing,
without burdening the programmer.I agree with Ince that we have less dependence

on arrays, and that pointers in programming
languages can be considered harmful. But I
disagree in as far as the concept of array is useful
for mapping one set of values onto another, where
this mapping cannot be described
computationally, but can only be expressed by
pairs or tuples of coordinates.

6.4. void *
“Passing paths that climb half way into the

void” - Close to the Edge, Yes.
Is void * the C equivalent of an oxymoron? A

pointer to void suggests some sort of semantic
nonsense, a dangling pointer perhaps? Maybe we
should tell the astronomers we have found a black
hole! While we can have some fun conjecturing
what some of the obscure syntax of C suggests, a
serious problem is that void * declarations are
used to defeat the type system, and so
compromise its purpose. A well thought out type
system does not require such a facility. In an
object-oriented type system, the root class of the
inheritance hierarchy provides the equivalent of
void.

6.3. Function Parameters
Parameters are used to pass routines simple

values (by-value parameters), or references to
entities (by-reference parameters). Parameters are
inputs to routines, and should not be changed.
When memory was expensive, reusing parameter
space could conserve space. Changing parameters,
however, is semantic nonsense, and most
languages get this wrong.

By reference parameters enable a routine to
change the value of an entity external to the
routine. Such updates beyond the environment of
a routine are side-effects. This introduces a
mechanism of updating the state space, other than
straight assignment (although the routine can use
assignment to achieve the ‘dirty deed’.) The
danger is that the state of an object can be
changed without using the well defined interface
of the object. By-reference parameters should not
be used to change the external world. Values
should only be passed to the external world by the
return value of a function. Semantically, this is
quite different to assignment to a reference
parameter; data flows through the program in one
direction, in via parameters, and out via return
values. Mathematically this maps compositions of

When a typed entity is assigned to a reference
of void *, it looses its static type information.
When it is assigned back to a typed reference the
programmer must explicitly specify to the
compiler the type information. This is error prone
and should at least result in a run-time check, to
make sure that the correct type actually is being
assigned. Without type checks, the routines of one
class can be mistakenly applied to objects of
another class.

6.5. void fn ()
The default type that a function returns is int.

A typeless routine returning nothing should be the
default. Instead this must be specified by another
confusing use of void. This is an example of

C++?? 2nd Edition page 22

where C’s syntax is not well matched to the
concepts and semantics. Syntactically no <type>
should suggest nothing to return. Also a typed
function can be invoked independently of an
expression. This is a shorthand way of discarding
the returned value. Values should be returned
because they need to communicate with the
outside world, and ignoring returned values is
often dangerous. In other words, using a typed
function as a void should result in a type error.

assign values to variables. Functions, however,
are the target of assignment. The return statement
accomplishes this in C. Algol has no return
statement, but uses assignment to the name of the
function. The assignment of a value to a variable
sets the return value for subsequent invocations of
that function.

It is trivial for a compiler to realise this
transparency of view for variables and functions.
In ALGOL style languages, the compiler
automatically deduces invocation when it sees a
name that was declared as a routine, rather than a
variable. The compiler knows that the identifier
refers to a routine. This compiler technology was
not realised when FORTRAN and COBOL were
developed. This compiler technology is possible,
because the compiler stores much information
about an entity. A compiler can check that the
programmer uses the entity consistently with the
declaration. A compiler can generate correct code,
without burdening the programmer with having to
redundantly use an invocation operator. This
enhances flexibility and implementation
independence.

In fact there should be no such thing as a void
function. A void function is a procedure.
Procedures and functions should be distinguished.
This distinction belongs to the problem ‘what’
domain. A procedure is a routine that changes the
state of its object, but returns no value. A function
should, in general, not cause any change to the
state of an object, but just return some result
dependent upon the objects state. Mathematically,
a function is an entity that returns a value of a
given type. Procedures are untyped, and do not
return a value. So it is incorrect to regard
procedures as functions. Functions as will be
explained below have more in common with
variables than procedures. Procedures can cause
side effects, functions should not cause side
effects. These distinctions are useful when
considering concurrency.

In fact the Unisys A series architecture
elegantly achieves this level of transparency at the
hardware level. The value call (VALC) operator
loads a value onto the top of stack. When VALC
hits a data value, that value is retrieved from
memory and loaded onto the stack. When VALC
hits a program control word (PCW), a routine that
computes the value to be loaded onto the stack is
invoked.

6.6. fn ()
Empty parenthesis represent the function

invocation operator in C. Even though ‘()’ is
mathematical looking, it is semantically
equivalent to FORTRAN’s CALL, COBOL’s
PERFORM, and JSR in assembler. The design of
these operators was influenced by the underlying
machine architectures. The invocation operator is
low level, machine and execution oriented, and in
the ‘how’ domain.

Variables and functions should be
interchangeable for programmer optimisation. In
C, it is not possible to change a function to a
variable without removing all the (). This might
be spread over many files, and the programmer
might not bother with optimisation to avoid the
tedium of the task. So the () operator reduces
flexibility. Thus implementation detail is visible
for the outside world to see. The () operator is
another bookkeeping task imposed on the C
programmer. Pure functional languages such as
SML remove the variable/function distinction
altogether, by not having variables at all.

This is opposite to most Unix shells, where
invocation operators such as ‘run’ and ‘exec’ are
not needed. The ability to execute file names as
commands extends the command repertoire. The
shell runs executables and interprets shell scripts.
There is no distinction as far as the shell user is
concerned. This is a widely accepted as an elegant
and effective convenience. C’s () operator
introduces the equivalent of a run command into
the language.

The removal of the variable/function
distinction would remove the need for a common
use of C++’s inline functions. Inlines clutter the
name space of a class and add work for the
programmer. All that is required is to directly
export a data member as a function.

No invocation operator exists in the problem
oriented domain of high level languages. This is
because the semantics of a function is to return a
value of a given type. How this value is computed
is unimportant. The value could be computed by a
routine invocation, by sending a message across a
network, by forking an asynchronous process, or
by retrieving a precomputed result from a memory
location, ie a variable.

C also has pointers to functions. Function
pointers are analogous to the call by name facility
in ALGOL, and this was recognised as having
pitfalls. Consistent application of the object-
oriented paradigm avoids these pitfalls. A
common use of function pointers is to explicitly
set up jump tables. The mechanism behind virtual
functions is a jump table of function pointers. The
design of a program can take advantage of this
fact, without resorting to explicit jump tables.

The distinction that languages like C make
between variables and value returning routines is
artificial. It could be pointed out that variables are
fundamentally different to functions, as you can

C++?? 2nd Edition page 23

Another use is to jump to a function in a table that
is indexed by an input character. A switch
statement can cater for this mechanism that makes
what is meant explicit, while keeping underlying
mechanisms (and possibly optimisations)
transparent. C++ allows function pointers to
member functions to be stored in tables (via the .*
and ->* operators).

appears to be left to the implementation, which
contributes to non-portability. If this can’t be
defined for a sequential processor, then it is even
worse for a concurrent environment.

The shorthand += and -= are more powerful as
values other than 1 can increment the variable. It
has been suggested that there should also be &&=
and ||= operators.

If it is mistakenly believed that a multiplicity
of operators is required to produce more optimal
code, then it should be pointed out that code
generators, especially for expressions, can
produce the best code for a target architecture. A
plethora of operators complicates the task of an
optimiser. A compiler can optimise well beyond
what a programmer can do. An optimising
compiler will analyse the surrounding code, and if
an entity is used several times in a local scope, it
will keep the value of that entity handy locally at
the top of a stack, or in a register, rather than
retrieve it from slow main memory several times.
The nature of such optimisations depends on the
machines architecture, which a programmer
should not have to be aware of. Open systems
demands that programs can be ported amongst
diverse architectures and environments, very
different to the original machine, and not only
run, but run efficiently. Optimisers work best with
simple, well defined languages.

6.7. Metadata in Strings
The implementation of strings in C mixes

metadata with data. Metadata is data about an
object, but is not part of the data itself. Examples
of metadata are addresses, size and type
information. Such metadata is often referred to as
data descriptors, and can be kept independently of
the data, with the advantage that the programmer
cannot mistakenly corrupt the metadata.

In C strings, metadata about where a string
terminates is stored in the data as a terminating
byte. This means that the distinction between data
and metadata is lost. The value chosen as the
terminator cannot occur in the data itself. The
common alternative implementation is to store a
length byte in a fixed location preceding the
string. This length metadata can be hidden from
the programmer who does not need to know
where the length metadata is stored. This
implementation also has the advantage that the
length of a string can be easily obtained, without
having to count the number of elements up to the
terminating null.

In fact constructs such as:

while (*s1++ = *s2++);

might look optimal to C programmers, but are
the antithesis of efficiency. Such constructs
preclude compiler optimisation for processors
with specific string handling instructions. A
simple assignment is better for strings, as it will
allow the compiler to generate optimal code for
different target platforms. String assignment will
also hide the implementation details of strings. If
the target processor does not have string
instructions, then the compiler should be
responsible for generating the above loop code,
rather than requiring the programmer to write such
low level constructs. The above loop construct for
string copying is also the contrary to safety, as
there is no check that the destination does not
overflow. The above code also makes explicit the
underlying C implementation of strings, that are
null terminated. Such examples show why C
cannot be regarded as a high level language, but
rather as a high level assembler.

6.8. ++, --
The increment and decrement operators are

often used as an example that C was designed as a
high level assembler for PDP machines. These
operators provide a shorthand convenience, but
are unnecessary. There are no less than three
ways to perform the same thing -

a = a + 1
a += 1
a++
++a

For full generality, only the first form is
required, the others are a mere convenience. The
last two forms a++ and ++a are the postfix and
prefix forms. They are often used in the context of
another expression. Thus several updates can be
performed in one expression. This is a very
powerful and convenient feature, but introduces
side effects into an expression that sometimes
have surprising effects, and can lead to program
errors. The following example is given on p.46 of
the C++ ARM -

As with name overloading, memory storage
update is a problematic, but necessary part of
programming. A language should provide it in a
consistent and expected way. Many languages
recognise that memory update is problematic, and
typically only provide limited but sufficient ways
of updating, by an assignment operation. (Many
languages have block memory copies as well, but
assignment can also provide block copy.)
Furthermore, many languages avoid side-effects

i = v[i++]; // the value of ‘i’ is
 // undefined

The ARM points out that compilers should
detect such cases, but the exact interpretation

C++?? 2nd Edition page 24

by limiting updates to only one per statement. C
provides too many ways to update memory. These
add nothing to the generality of the language,
increase the opportunity for error, and complicate
automatic optimisation. Restrictive practices are
justifiable in order to accomplish correctly
functioning and efficient software.

Consider the paradigm of letters and words.
Words are spelt by assembling letters in order.
There are 26 distinct letters. With the addition of
digits 0 to 9, and the underscore character, we
have a complete and correct definition for
identifiers. Letters can be written in a number of
styles. They can be bold, italic, upper or lower
case. Such typographic representations, however,
do not change the semantics of a word. Thus if we
write ALGOL, Algol or algol, we recognise the
word to represent a computer language. The case
of the letters does not change the semantics. Letter
case is only a typographic device. Typographic
conventions make program text more readable,
but should not affect the semantics of a program.
Case distinction is based on the low level
paradigm of character codes such as ASCII used
internally in the computer. This weakens the
purpose of using names to replace addresses, as
names are reduced to a string of character codes.

6.9. Defines
The define declaration -

#define d(<parameters>)

has a different effect to -

#define d (<parameters>)

The second form defines d as (<parameters>).
Extra white space between tokens should not
affect semantics of constructs.

#defines are poorly integrated with the
language. The ‘#define’ must be in column 1, and
knows nothing about scope rules. Errors in
defines can lead to obscure errors, as the
preprocessor does not detect them, but leaves
them for the compiler. Programmers must be
familiar with the particular preprocessor
implementation on their system, as preprocessor
implementations are different, particularly
between Classic C and ANSI C.

Case distinction also contributes to errors. It
introduces ambiguity, and as has already been
mentioned, ambiguity weakens the purpose of
names, as identity is lost. As every programmer
will have experienced, one character errors are
more difficult to find than one would think. For
example if an identifier is declared Fred, another
one can be declared fred. Such names are easily
mistyped and confused. We are in general poor
proof-readers. The psychological reason for this
is that the the brain tends to straighten out errors
for our perception automatically. The human brain
is an excellent instrument for working out what
was intended, even in the presence of radical
error. (This makes us good at difficult tasks like
speech recognition.) In order to overcome this
programmers must use their powers of
concentration to override this natural tendency of
the brain. Distinguishing upper from lower case in
names only adds another level of difficulty. Good
language design takes into account such
psychological considerations in these small but
important details, being designed towards the way
humans work, not computers. Such considerations
of cognitive science make a big difference to the
effectiveness of people, but do not have any
impact at all on the efficiency of code generated
for the computer. What is more important, people
or computers?

6.10. NULL vs 0
[Ellemtel 92] recommends that pointers

should not be compared to, or assigned to NULL,
but to 0. Stylistically, NULL would be preferable.
It would also allow for environments where null
pointers have a value other than 0. ANSI-C,
however, has subtle problems with the definition
of NULL.

6.11. Case Distinction
It is good to adopt typographic conventions

for names, but distinguishing between upper and
lower case in names can cause confusion.
Confusion leads to errors and systems that are
difficult to maintain and modify. Case distinction
is based on the implementation paradigm of how
character codes work. Why do we have names?
To give entities identity, and aid our memory of
that identity. Philosophically, case distinction is
contrary to the fundamental purpose of names. Case distinction provides another form of

name overloading. Name overloading is a double-
edged sword. It leads to ambiguity, confusion and
error. Name overloading as has been suggested in
the section on name overloading should only be
provided in controlled and expected ways, where
overloading provides a useful function such as
module independence or polymorphism. Where a
name is overloaded in the same scope the
compiler should report an error.

Case distinction in interactive systems is a
poor user interface. It is clumsy having to
continually use the shift key, and will slow a good
typist. More importantly, case distinction makes
names harder to remember, and so is contrary to
the purpose of aiding memory. It is difficult
enough for users to remember command
mnemonics or file names, let alone exactly the
case. Names are used instead of difficult to
remember addresses. If we did not have names,
we would have to retrieve files by addresses, or
call people by their social security number.

As another example, a commonly used
technique is -

C++?? 2nd Edition page 25

class obj TYPE
{ CHARACTER

int Entry;
FUNCTIONS
 ord: CHARACTER -> INTEGERvoid set_entry (int entry)
// convert input character to integer{
 char: INTEGER /-> CHARACTERentry = Entry;
// convert input integer to character}

} PRECONDITION
 // check i is in range

If you have not spotted the error in the above
example, what was it supposed to mean?

 pre char (i: INTEGER) =
 0 <= i and
 i <= ord (last character)

6.12. Assignment Operator
The notation ‘->’ means every character will

map to an integer. The partial function notation ‘/-
>’ means that not every integer will map to a
character, and a precondition, given in the ‘pre
char’ statement, specifies the subset of integers
that maps to characters. Object-oriented syntax
provides this consistently with member functions
on a class:

Using the mathematical equality symbol for
the assignment operator is a poor choice of
symbols. Programming assignment is not equal to
mathematical equality (:= != =). Language
designers of ALGOL style languages realised they
were semantically quite different, so took the care
to distinguish, only using ‘=’ to mean equality in
the sense of mathematical assertion. In C the lack
of distinction leads to error. It is easy to use =
(assignment) where == (equality) is intended,
which looks reasonable, but results in errors that
are difficult to detect.

i : INTEGER
ch : CHARACTER

i := ch.ord
This leads to a more general criticism of C, in

that it has a pseudo mathematical appearance. Few
people are proficient at interpreting mathematical
theorems, most passing over such sections in text,
making the assumption that the mathematics
proves the surrounding text. The pseudo-
mathematical nature of C has this bad attribute of
mathematical notation. It is difficult to read, while
lacking the semantic consistency and precision of
mathematical notation. One of the keys of
reusability is readability.

// i becomes the integer value of
// the character.
ch := i.char
// ch becomes the character
// corresponding to the value i.

but a routine char would probably not be
defined on the integer type so this would more
likely be:

ch.char (i);
// set ch to the character
// corresponding to the value i.6.13. Type Casting
The hardware of many machines cater for such

basic data types as character and integer, and it is
entirely possible that a compiler will generate
code that is optimal for any target hardware
architecture. So many languages have character
and integer as built in types. The object-oriented
paradigm, however, can treat such basic data types
consistently and elegantly, by the implicit
definition of their own classes.

Type casting is just a mechanism to map
values of one type onto values of another type.
This means type casting is no more than a specific
form of mathematical function. Type casting has
been useful in computer systems. Often it is
required to map one type onto another, where the
bit representation of the value remains the same.
Type casting is therefore a trick to optimise
certain operations. Type casting provides no
useful concept that general functions cannot
implement. Furthermore, type casting undermines
the purpose of strongly typed systems. In many
languages, the type system has not been
consistently defined, so programmers often feel
that type casting is necessary.

Another example of type conversion is from
real to integer. Here though, the programmer
might wish to specify the use of two type
conversion functions to truncate or round.

TYPE
REALMathematically, all functions perform type

casting. An example often used in programming is
to cast between characters and integers. Type casts
between integers and characters are easily
expressed as functions using abstract data types
(ADTs).

FUNCTIONS
truncate: REAL -> INTEGER
round: REAL -> INTEGER

r: REAL

C++?? 2nd Edition page 26

i: INTEGER if (condition)
 statement1; /* Semicolon

i := r.truncate required */
 // i becomes the closest integer else
 // <= r statement2;

i := r.round
if (condition) // i becomes the closest integer
{ // to r
 statement1;

Again many hardware platforms provide
specific instructions to achieve this, and an
efficient object-oriented language compiler will
generate code best suited to the target machine.
Such inbuilt class definitions might be a part of
the standard language definition.

} /* Semicolon must be omitted */
else
 statement2;

This is an irregularity, as a parser will
reduce both of the above to the grammatical form:

if (condition) statement6.14. Semicolons
else statement

I am not concerned whether the semicolon is
defined as a terminator or separator. Arguments
that languages that define the semicolon as
terminator are superior to those that define it as
separator are, however, baseless. The semicolon
as separator is really quite logical. It is based on
viewing the semicolon as a statement sequencing
or concatenation operator. It is therefore a binary
operator, requiring both a left and a right hand
side. Some people claim to find this concept
difficult to understand, but if we consider it in the
context of a mathematical expression, it would be
silly to expect that an addition be written as:

(In fact why do conditions in C if and while
statements have to have parentheses around
them?)

7. Conclusions
C++ is overly complex. C is widely

recognised as being a simple language. But even
this is doubtful, as it has many operators, and a
difficult precedence system. Its pointer style of
programming is difficult. Overall, C has many
traps that lead to difficult to detect errors in
software. Object-oriented languages should
provide sophisticated concepts in the simplest
possible framework. Where the framework is not
simple, the concepts are obscured. OOP addresses
many issues in order to facilitate the production of
complex and sophisticated programs. Many of
these issues are addressed in implicit and subtle
ways, but are lost in C++. Subtle errors can be
introduced into C++ software in many ways, and
furthermore, the combination of these will cause
even further problems. C++ has devices for petty
convenience, while sacrificing major
conveniences and long-term correctness and
safety. C++ forces the programmer to perform
many administrative bookkeeping tasks that a
compiler can easily do.

a + b +

Another way to look at a separator is to
consider the structure of a program. A program is
a list of elements. The executable part of a
program is a list of sequentially executed
instructions. Elements in a list must be separated,
and the semicolon is one syntax to separate
elements in a list. The semicolon is therefore part
of the syntax of the list, not part of the syntax of
the individual instructions. Languages such as
FORTRAN separated instructions by requiring
that they be placed on different lines or cards. If
an instruction overflowed a line, a continuation
character was required, like the backslash in C.
Well defined languages do not require
continuation characters, as line breaks are
unimportant, and have no effect on semantics.
Languages should have very regular grammars, so
that the semicolon could be an entirely optional
typographic separator.

It can be considered what application domain
C++ is relevant for? The answer to this is that
C++ might be used as a better C. But for what
applications is C relevant? C is relevant for low
level Unix systems programming. It is not a
generally applicable language in view of its low
level nature, and its flaws. C is not applicable for
large scale production. Hence C++’s attempt to
improve it. C++, however, has not solved C’s
flaws, as I once hoped it would, but painfully
magnified them. Better languages exist for higher
level functions such as communications and
networks, scientific work, compilers, etc. I
envisage that C has a place as a high level
assembler that can be used to implement small
pieces of code on suitable platforms, where

In natural language both the comma and
semicolon are separators, only the full stop is a
terminator. If the comma was a terminator,
function invocations would look like:

fn (a, b+c, d, e,);

It is often argued that the semicolon as
separator leads to irregularities. C’s handling of
the grammar of semicolons, however, leads to an
irregularity in if/else’s:

C++?? 2nd Edition page 27

efficiency is of prime importance. Thus the use of
C would be limited and well controlled, rather
like small assembler routines are currently used in
some systems for the same purpose. Indeed the
move to C++ should only be considered in the
case of upgrading a body of C programs for
backwards compatibility. In the case of new
projects alternatives to C and C++ should
seriously be considered.

advanced musician ensure that the tempo of a
piece is correct, and since playing to a metronome
is more difficult, will help sharpen the musicians
performance of the piece. The musician does not
just view the metronome as an aid for beginners,
or as something that restricts him to a set beat, but
as a tool that helps produce a polished and
professional performance. C should not be seen as
a language to which you graduate after you have
learnt to program in languages with safety checks.
In fact changing to C or C++ is a great step
backwards. Languages with consistency and
semantic checks are essential aids to the
production of professional software.

Programming is the orchestration of change
within a large state space. Object-oriented
techniques provide a method of simple division
and management of such state spaces. Managing
such state spaces requires the simplest techniques,
in order to guard against detectable
inconsistencies that lead to errors in executable
systems. C and C++ do not implement the simple
management of a large state space, and allow
many potential errors to go undetected. The role
of a language as a tool cannot seriously be
regarded as some authoritarian that stops us doing
what we want or need to do, as many languages
with type safety and consistency checks are often
viewed. Programming languages should embody
the collective wisdom of common sense practices
that have been learnt over many years, by
common and painful experience. C++ lacks the
implementation of much of this wisdom.
[Sakkinen 92] observes that much of the C++
literature has few references to external work or
research. It fails to draw on the insights and
progress made by many researchers. This leads
me to believe that C++ is parochial and removed
from the many advances that will make
production of systems easier and more cost
effective.

This paper has shown many cases where C++
uses old C mechanisms to provide things that can
and should be expressed consistently within the
object-oriented paradigm. For example type
casting. The move to pure object-oriented
languages will facilitate more consistent
programming and avoid many typical errors that
occur in software production. C++ also makes
distinctions that belong in the ‘how’
implementation domain. For example, ‘.’ vs ‘->,
and variables and functions. These make
bookkeeping work for programmers, which
should be handled by a compiler. But then C++
fails to make distinctions that belong in the ‘what’
problem domain. For example, procedures vs
functions. Making distinctions in the ‘how’
domain adds inconvenience to the language.
Failing to make distinctions in the ‘what’ domain
limits the power and expressiveness of the
language. The amount of change required in C++
to address the issues raised in this paper is seen as
largely insurmountable.

It is better to detect and avoid errors than to
fix them. The fixing of errors happens many times
during the development process. This slows down
the development process, and is therefore costly.
Good programmers in this context (often called
‘gurus’), are those who recognise symptoms, and
recommend fixes. Good programmers in the better
sense (often called ‘impractical idealistic
dreamers’) adopt better practices (programming
languages being a subset of these), that avoid
error in the first place.

A programming language is just a tool, in the
same way that an axe is a tool. If the axe is blunt
when chopping down a tree, then procedures,
processes and methodologies could be invented to
make it as effective as possible. But that leaves
the real problem unsolved; that the axe that does
the real work is blunt. So it is with programming
languages. To develop a system, it must be
implemented, and a programming language is the
tool to do the real work. If the language is blunt,
then procedures, processes and methodologies
might alleviate the situation, but they do not solve
the problem. Once the axe is sharpened, then real
progress is made, and the procedures, processes
and methodologies also become more effective. A
good axeman will have good axe wielding
technique, but given a choice of axes will choose
the sharpest implement. A poor axeman could be
ineffective with even a sharp axe, but the axe
maker will still strive to produce the sharpest axe
for the good axeman. The argument that poor
programmers will produce bad programs in any
language so we shouldn’t bother with better
languages is fallacious.

C encourages gurus who spout false wisdom
on obscure subjects. Writing programs in C is
often called ‘coding’. Coding is writing obscure
encryptions that will later have to be decoded, by
none else than a guru! C also encourages
programming by guesswork. C programmers often
solve ‘bugs’ by adding extra ()s, *s and &s,
without understanding the problem. People who
attain proficiency at this guesswork, are known as,
well you guessed it, gurus!!

The view that correctness checks are training
wheels for students, which gurus don’t need must
be dispelled. Many disciplines have techniques to
ensure correctness. For example, the metronome
in music is not just for students, but will help an

As mentioned in the introduction, both sides
of the analysis/design vs implementation debate

C++?? 2nd Edition page 28

need to compromise in order to bridge the
semantic gap. The perpetuation of low level
languages such as C into OOP is proof that the
programming community is not willing to
compromise, or sharpen its axe enough in order to
bridge this costly gap.

8. Bibliography
C++ ARM Ellis and Stroustrup “The annotated
C++ Reference Manual” AT&T 1990.
[Capretz 87] Pierre J. Capretz “French in Action,
A Beginning Course in Language and Culture”
Yale University Press.The critique began with certain questions, and

as no work can be absolute (particularly a
programming language), it will end with more
questions that it is hoped will create more debate,
and more questioning into what we are really
trying to achieve with program development.

[Cline] Marshall Cline “C++ Frequently Asked
Questions” comp.lang.c++ newsgroup.
[Crystal 87] David Crystal “The Cambridge
Encyclopedia of Language” Cambridge
University Press.Does C++ provide effective communication

between programmers separated in both space and
time? Does C++ provide communication between
the levels of analysis, design, implementation and
maintenance?

[DDH 72] Dahl, Dijkstra, Hoare “Structured
Programming”
[Dijkstra 76] E.W. Dijkstra “A Discipline of
Programming” Prentice Hall.

Are the compromises made by C and C++ still
relevant to today’s environments, and the
environments of the not very near future?

[Ellemtel 92] “Programming in C++: Rules and
Recommendations” Ellemtel Telecommunication
Systems Laboratories, Sweden.

Could C++ be regarded as the PL/1 of the
object-oriented world, as PL/1 was the marriage
of FORTRAN and structured ALGOL concepts,
and C++ is the marriage of C with object-oriented
concepts?

[Ince 92] D.C.Ince “Arrays and Pointers
Considered Harmful”, ACM SigPlan Notices,
January 1992.
[Mody 91] R.P.Mody “C in Education and
Software Engineering” ACM SIGCSE Bulletin
Vol.23 No. 3 September 1991.

Are the compromises made for the restricted
machines and environments of 20 years ago still
appropriate for today? Are languages based on 20
year old compromises appropriate in modern
software development environments?

[Reade 89] Chris Reade “Elements of Functional
Programming” Addison-Wesley, 1989.
[RBPEL91] Rumbaugh, Blaha, Premerlani, Eddy,
Lorensen “Object-Oriented modelling and
Design”. Prentice-Hall, 1991.

Should new software developments be forced
to accept such compromises?

Is C++ patching old material with new cloth,
or pouring new wine into old wineskins?

[S & W 79] William Strunk and E.B.White “The
Elements of Style”, MacMillan Publishing, 1979.

What are we really trying to achieve in
programming anyway? [Sakkinen 92] Markku Sakkinen “Inheritance and

Other Main Principles of C++ and Other Object-
oriented Languages”. University of Jyväskylä,
1992. (Also published as selected papers in
ECOOP ‘88, Computing Systems Vol. 5 No. 1,
and Structured Programming Vol. 13 (1992).)

Ian Joyner
November 1992

[SJE91] Saake, Jungclaus, Ehrich “Object-
Oriented Specification and Stepwise Refinement”
in IFIP Workshop on Open Distributed Processing
Berlin, 1991.
[Weg91] Peter Wegner “Concepts and Paradigms
of Object-Oriented Programming” ACM
SIGPLAN OOPS Messenger Volume 1 no. 1
August 1990.
[X3J16 92] Members of the X3J16 working group
on extensions “How to write a C++ Language
Extension Proposal for ANSI-X3j16/ISO-WG21”
ACM SIGPLAN Notices Vol. 27 No. 6 June
1992.
[Yoshida 92] Koichiro Yoshida Title and book in
Japanese.

C++?? 2nd Edition page 29

