Autoduck User's Guide

To display alist of topics by category, click any of the contents entries below. To display an
alphabetical list of topics, choose the Index button.

Basics
These topics describe the basic approach of Autoduck:

About Autoduck

Features of Autoduck
Autoduck Tags

Autoduck Comment Blocks
Source Parsing

Nesting Topics Inside Topics
Output Types

Tag Reference
The following topics describe the tagset defined in AUTODUCK.FMT:

@doc

Topic Tags
Paragraph Tags
Text Tags

Using Autoduck.Exe

These topics describe how to use the application, and how to structure your makefile entries:

Using AUTODUCK .EXE
Makefile Entries for Autoduck

Customizing Output

Autoduck lets you change the format of output produced by Autoduck. Y ou can add tags,
change the structure of topic indexes, and even define new output file types.

Creating Links Across Multiple Help Files
Generating Topic Indexes

Conditional Topic and Paragraph Extraction
Extraction and Filtering Expressions

Topic Logs

Format-File Reference

Tags and output strings are defined in aformat file like AUTODUCK.FMT. You can
customize AUTODUCK.FMT or define your own format file.

Defining Tags and RTF Output Strings
Format Strings

[CONSTANT]

[DIAGRAM]

[EXTENSION]

[FILE]

[INDEX]
[PARAGRAPH]
[TEXT]
[TOKEN]
[TOPIC]

About Autoduck

About Autoduck

The sources for this Help file were generated by Autoduck, the source code documentation tool that
generates Print or Help files from tagged comments in C, C++, Assembly, and Basic source files.
For more information, contact Eric Artzt (erica@microsoft.com).

About Autoduck

Autoduck is a command-line utility that extracts specially tagged comment blocks from
programming source files and generates rich text files containing the contents of those
comment blocks. Autoduck has traditionally been used to document programming APIs.

Placing APl documentation within the source files helps programmers disseminate
information about a devel oping codebase. Autoduck can generate online Help files containing
full hypertext coding with links and keyword lists. Typically, Autoduck is integrated into the
build process, so a new Help database can be automatically generated each build.

Integration of documentation with code makes it easier to keep the documentation up to date.
When devel opers make changes to APIs, they can quickly update the comment blocks at the
same time. When APIs are released for use by outside customers, User Education personnel
can edit the comment blocks, add example code, and generate final RTF files for inclusion in
printed or online documentation.

Autoduck Comment Blocks

AUTODUCK.EXE scans through a source file and extracts information marked with
Autoduck tags. Autoduck information is stored in topics, discrete units of information. For
example, atopic might consist of a function reference description or a discussion of sample
code. The following example shows an Autoduck topic:

/1 CLazylnterface:: Querylnterface

/1

/1 @Tfunc | nplenents <om | Unknown. Queryl nterface>.
11l

/1 @ommiThe default inplenmentation del egates to the
/1 controlling unknown.

/1l

HRESULT FAR PASCAL ClLazylnterface:: Querylnterface(

REFIID riid, /1 @arm Requested interface.
LPVOI D FAR *ppv) /1 @arm Where to store the returned <f AddRef>'d
/1 interface pointer.

{
DPF3(" CLazylnterface:: Q (' %')\n", Debugl!|DName(3, riid));

/1 delegate to controlling unknown
return m punkQuter->Querylnterface(riid, ppv);
}

The @mfunc tag marks the start of a new topic describing a C++ member function. The
@comm and @parm tags identify paragraph types within the comment blocks (these mark
comment and parameter descriptions, respectively). The angle bracket codes (<f > and <om
>) are text tags marking special types of text (functions and object methods).

Autoduck is Freel!
Autoduck isfree. Thereis no licensing fee or restriction. The application is considered sample
code and is not supported by Microsoft Corporation. Here's the legalese:

THISTOOL IS NOT SUPPORTED BY MICROSOFT CORPORATION. IT IS PROVIDED
"AS|S' BECAUSE WE BELIEVE IT MAY BE USEFUL TO YOU. WE REGRET THAT
MICROSOFT ISUNABLE TO SUPPORT OR ASSIST YOU SHOULD YOU HAVE
PROBLEMS USING THIS TOOL.

You are free to use the application, distribute it to others, and/or modify the source code. I
you make changes, have comments, or find bugs, you can mail them to me, Eric Artzt, at my
Internet address:

erica@microsoft.com

| can't guarantee that | will fix your bug, or even answer your question right away, because
regrettably, supporting Autoduck is not what | do for aliving - rather, | produce children's
software products - but | will do what | can as time (and interest) permits.

Features of Autoduck

The following are some interesting features of Autoduck:

Flexible Tag Definition

Autoduck tags are defined in atext file called a formatting file. The formatting file defines
which tags are recognized as well as the RTF output for atag. The formatting file makes it
easy to define your own tags or modify the formatting applied to topic text. Autoduck comes
with a standard formatting file, AUTODUCK.FMT, that defines commonly used tags for C,
C++, and the OLE2 Component Object Model (COM).

For more information, see “Defining Tags and RTF Output Strings”.

Source Parsing

Autoduck can extract certain information from the C/C++ source declarations. For example,
devel opers can type a function name in the comment block, or allow Autoduck to extract a
function name from the function header.

For more information, see “Source Parsing”.

Extraction Tags

When performing an Autoduck build, you can use extraction tags to specify which Autoduck
topics are included. Thisis useful when your codebase has both internal and external APIs, or
when you want to generate RTF files for a subset of topics.

For more information, see “Conditional Topic and Paragraph Extraction”.

Topic Logs
Autoduck can reference atopic log file when generating hypertext links for RTF. A topic log
file lists the set of topics available to link to. If atopic is listed in the topic log, Autoduck can

create a hypertext link to it. If the topic is not listed, Autoduck can generate aternate
formatting (like bold text).

For more information, see “Topic Logs’.

Autoduck Tags

Autoduck uses tags to identify what type of information is contained in a comment block. For
example, atag might identify a paragraph as a description of a parameter or return value of a
function.

An Autoduck tag consists of an ampersand (@) followed by a tag name. Most Autoduck tags
are defined in a format-information file, which is required by the AUTODUCK_.EXE tooal.

The format-information file defines the number of fields within atag, the formatting strings to
output for the tag, and extraction information for the tag. AUTODUCK.EXE only recognizes
tags that appear as the first item within aline of comment text.

There are three basic types of Autoduck tags.

» The @DOC tag, which signals the beginning of Autoduck information within a source file
and defines flags used to determine which Autoduck information to extract.

» Topic tags that define new Autoduck topics.
» Paragraph tags that define new types of paragraphs within Autoduck topics.
All three types of tags must conform to the following formatting conventions:

» Tag names must begin with the "@" character.
* White space is not allowed within atag name.
» Tag names are not case-sensitive.

Topic and paragraph tags contain one or more fields of text. Fields are delimited by pipe ()
characters. A field can contain multiple paragraphs of text (paragraphs are delimited by
consecutive newlines). For example, the following @PARM tag defines information for a
paragraph about a function parameter:

//@armint | i Type | Specifies the type.

Autoduck output combines formatting codes stored in the formatting specification file with
field text parsed from the Autoduck comments in the source file. In the above example, the
parameter name i Type might be output in italics, followed by an indented paragraph
containing the third (description) field.

In addition, Autoduck provides for text tags that identify special types of paragraph text (for
example, afunction or message name). The three types of @ tags, as well as the text tags, are
described in the following sections.

@DOC Tag

The @doc tag must be the first Autoduck tag encountered in the source file. The @doc
signals the beginning of Autoduck information within a source file and identifies extraction
flags, tokens used to classify Autoduck topics. For example, you can classify Autoduck
information as EXTERNAL or INTERNAL, then extract only those topics falling under the

EXTERNAL category.
For more information on @DOC, see “ Conditional Topic and Paragraph Extraction”.

Topic Tags

An Autoduck topic begins with a topic tag. Topic tags are defined in the [TOPIC] section of
the formatting file.

The following example shows a @FUNC tag, which defines a new topic describing a
function:

[/ @unc int | MyFunction | This function performs a useful task.

The function has three fields, for the return value, function name, and function description.
The text in these fields is written to the output file.

Paragraph Tags

A paragraph tag defines a paragraph within a topic. Paragraph tags are defined in the
[PARAGRAPH] section of the formatting file.

For example, the following @PARM tag defines a topic paragraph containing a description of
afunction parameter:

/| @arm char *| szText | Specifies a pointer to a text string.

Text Tags

Text tags can be used within topic and paragraph tags to identify references to document
elements and to generate special characters such as the trademark symbol. Text tags conform
to the following guidelines:

» Thetag and its fields are enclosed in angle brackets (< >).
» Fields are separated by a period (.) or double colon (::).
» Tag names are not case-sensitive.

A text tag begins with the opening bracket, followed immediately by the tag name. Fields, if
present, are placed following a single space following the tag name:

<tagname fieldL.fild2.field3>
Text tags are defined in the [TEXT] section of the formatting file.

For example, the following @FUNC tag contains the text "Y ourFunction” marked with a
function name type:

/1 @unc int | MyFunction | This function perforns a useful task. But
/1 always be sure to call <f YourFunction> first!

Autoduck Comment Blocks

Autoduck-tagged text can reside in any text file, as long as it resides within a C/C++,
Assembler, or BASIC comment block.

Note the following guidelines for Autoduck comment blocks:

» Autoduck topics can reside in a single comment block, or they can span multiple comment

blocks.

Autoduck comment blocks can begin anywhere on aline (they can be preceded by source
statements).

C-language comment blocks can use the slash/asterisk format (/* closed by */) or the
slash/slash format (//).

Assembly-language comment blocks must be a series of comment statements beginning
with semicolon (;) characters.

Basic-language comment blocks must be a series of comment statements beginning with
apostrophe (') characters.

A @DOC tag must precede any autoduck tags within the source file. The extraction flags
established by an @doc tag remain in effect until the end of the file, or until the next @doc
tag encountered.

Examples of Comment Blocks
This section contains several examples of Autoduck blocks.

The following comment block includes an @DOC tag and @FUNC tag:

/ *

* This text is ignored by Autoduck.

*

* @loc

*

* @unc int | MyFunc | This function performs a useful task.
*/

Following are other variations, using different types of comment delimiters:

Il
11l
11
Il
Il
Il
Il

C++ sl ash-sl ash coment
This text is ignored by Autoduck.

@loc

@unc int | MyFunc | This function performs a useful task.

; Assenbly | anguage comment

; This text is ignored by Autoduck.

@loc

@unc int | MyFunc | This function performs a useful task.
BASI C comment

This text is ignored by Autoduck.

@loc

@unc int | MyFunc | This function performs a useful task.

Noise Characters
The following characters are considered to be noise characters and are stripped from text

before it is output:

» Leading white space characters (spaces and tabs).

» Agterisks, semicolons, and apostrophes in the first character position, and any similar
characters immediately following the first character position.

» Asterisks in the second character position if the first character is a space.

Topics Spanning Multiple Comment Blocks

Autoduck blocks can span several comment blocks. The Autoduck-tagged text is appended to
the preceding Autoduck topic within the source file.

The following example includes three separate comment blocks. The function topic is started
in the first comment block, and the parameter paragraphs are specified in later comment
blocks:

/1 Set EnptyFiel ds

11l

/1 @unc This function sets all enpty fields to point to stub text.
11l

voi d Set Enpt yFi el ds(

PTAG pt ag, /| @arm Specifies the tag to fill.

int nFields) //@arm Specifies how many fields

{

int i;

for(i = ptag->nNunFields; i < nFields; i++)
ptag->szField[i] = gszEnptyField

pt ag- >nNunFi el ds = nFi el ds;
}

This example also shows the source-parsing capability of Autoduck; normally, the @FUNC
tag requires three fields (return value, function name, and description), so Autoduck parses
the function header immediately following the first comment block to obtain the return value
and function name.

Source Parsing

Autoduck has the capability of extracting tag fields from C/C++ and Visual Basic source
statements. The purpose of this source-parsing capability is to eliminate redundant entry of
type and variable declarations. To enable source parsing for an autoduck tag, you must add a
“.PARSESOURCE” entry in the formatting file specification for that tag.

If the required source-parsing entry is specified in the formatting file, Autoduck attempts to
parse the tag fields from the source text if the required fields are not present in the tag itself.
For example, if the @parm tag expects three fields (parameter type, name, and description),
and only one tag (description) is present, Autoduck will check the formatting-file entry to see
whether source parsing is enabled. If it is, Autoduck will try to extract the missing fields from
the source text.

Supported Source Parsing Configurations
Autoduck can parse source text from two locations:

A source declaration following an Autoduck comment block

» A source declaration occurring on the same line on which an Autoduck comment block
begins (comment following the source element)

Here are examples of both types:

/1 @unc This is ny function.
/] @arm This is a string paraneter.
// @arm This is a integer paraneter.

int MyFunction(char *sz, int i)

{

}

/! @unc This is another function.

i nt Anot her Functi on(

char *sz, //@arm This is a string paraneter.
int i) /'l @arm This is a integer paraneter.

{
}

Parameter and Structure Field Parsing

Autoduck can parse the type specifier and variable name from a function parameter or
structure field. The parameter/field type and name are deposited in the first two fields of the
tag record.

To enable parameter or field parsing, you must add either the statement
“ . PARSESOURCE=parameter” or *.PARSESOURCE=fidld” to the tag definition.

Function and Member Function Parsing

Autoduck can parse the return type, function name, and (if applicable) class name from a
function or member function definition.

For functions, the return type and function name are deposited in the first two fields of the tag
structure. For member functions, the return type, class name, and function name are deposited
in the first three fields of the tag structure.

To enable function or member function parsing, you must add either the statement
“.PARSESOURCE=function” or *.PARSESOURCE=memberfunction” to the tag definition.

Class Parsing

Autoduck can parse the class name from a class declaration. It does not parse a "const"
keyword; to add a "const" keyword, use an " @this const" tag within the comment block.

To enable class parsing, you must add the statement “ . PARSESOURCE=class’ to the tag
definition.

Enumeration Member Parsing

Autoduck can parse the names of enumeration members.

To enable enumeration member parsing, you must add the statement
“ .PARSESOURCE=emem" to the tag definition.

Nesting Topics Inside Topics

To document inline member functions, class structures, and class enumeration types, you can

created nested topics that generate both an Autoduck paragraph and a separate Autoduck
topic.

For example, consider the following C++ class declaration:
class CString {
public:

CNested(void) { mszText = NULL; }
~CNest ed(void) { Reset(); }

void Reset(void) { if(mszText) delete mszText; mszText = NULL; }

enum Conpar eFl ags {
conpNor mal ,
conpl gnor eCase,
conpFuzzy,

}

int Conpare(const char *szConpText, int nConpFlags = 0);
voi d Set(const char *szText);

private:

char *m szText;

b

The inline constructor and member functions can have their own topics, as can the
CompareFlags enumeration type.

Tagging Nested Topics

To generate a topic for nested constructs, tag the construct with a paragraph tag, but add a
topic tag after the paragraph tag.

Also, you can define paragraph tags that only apply to the nested topic, and are not picked up
as part of the main topic.

For example, here is the same class Autoduck'ed:

/'l @l ass A sinmple string class.
class CString {

public:
/1 @menber, nfunc Constructor, initializes string to enpty.

CNested(void) { mszText = NULL; }

/| @menber, nfunc Destroys the string, if present.
~CNest ed(void) { Reset(); }

/1 @menmber, nfunc Destroys the string, if present.

void Reset(void) { if(mszText) delete mszText; mszText = NULL; }

/1 @menber, menum Conpari son flags for the <nf .Conpare> function.

enum Conpar eFl ags {

conmpNor mal , /| @@mem Case-sensitive conpare.

conpl gnor eCase, /| @@mem Case-insensitive comnpare.

conpFuzzy, /| @@mem Fuzzy conpare, if words sound
} /1 alike

/I @menber Conparison function.

i nt Conpare(const char *szConpText, int nConpFlags = 0);
/'l @menber Sets the text of the string.

voi d Set(const char *szText);

private:
/| @menber Pointer to string text.

char *m szText;

b

Format-File Entries for Nested Topics

To generate the topic tag for a nested topic, Autoduck first parses the paragraph tag, then
copies the paragraph fields over into the topic tag. The .MAP format-file entry defines how
paragraph-tag fields are mapped over to the topic tag.

For example, the following entry for the @cmember tag defines how fields in that tag are
mapped over to topic fields. There are .M AP entries for the @mfunc, @menum, and
@mstruct tags.

.tag=cnmenber, help, 4, 2

.pre=$[cl asshdr]

.format=$(reset)$(ternml){\uldb $1}{\v #1} {\uldb $2}{\v #class.1__#2}\par
$(reset) $(def 1) $4\ par

.if=exists($class. 1::%<2),fieldenpty(3), exists($1)
. par sesour ce=cl assnenber

. map=nfunc, $1, $t. 1, $2, $4

. map=enum $1, $2, $4

. map=struct, $1, $2, $4

The @mfunc entry maps four @cmember fields over to the topic tag. The first @mfunc
field receives the first @cmember field; the second @mfunc field receives the first field of
the enclosing topic (@class) tag; and the third and fourth fields receive the second and fourth
fields, respectively, of the @cmember tag.

Output Types

Through the format (.FMT) files provided with the package, Autoduck currently supports
three types of output:

* Rich Text Format (RTF) for Print: RTF is the interchange format used by Microsoft word
processors. Many other word processors support the RTF file format. Autoduck can create
.RTF output for print documents (i.e., a document designed to be opened in a word

processor and printed).
Use the /RD option to generate RTF Print output. This is the default output format if none
is specified.

Print RTF definitions areincluded in AUTODUCK.FMT, which is used by default.

* Rich Text Format (RTF) for Windows Help: RTF is also used as the input format for
Microsoft Windows Help, a hypertext/help application available on Microsoft Windows.
Autoduck outputs a different flavor of RTF for use in Help titles - in this case, the output
includes Help compiler directives coded as footnotes in the RTF. Autoduck also creates a
Help Project File (HPJfile) needed by the Help compiler.

Use the /RH option to generate RTF Help outpuit.

Help RTF definitions are included in AUTODUCK.FMT, which is used by default.
 HTML: The newest output type supported.

Use the /RHTML flag to generate RTF Help output. Y ou must also specify the
HTML.FMT formatting file (/f HTML.FMT).

HTML definitions are included in HTML.FMT.
Example

Use the following command line to output Help RTF for al the .CPP files in the current
directory:

autoduck /rh /o myproject.rtf *.cpp

Use the next command line to output print RTF:

aut oduck /o myproject.rtf *.cpp

Use the next command line to output HTML.:

autoduck /rhtm /f c:\autoduck\htm .fnmt /o nyproject.htm*.cpp

Using AUTODUCK.EXE

AUTODUCK.EXE is a console application that extracts and formats Autoduck source files.
The following is the command-line syntax for AUTODUCK.EXE:

AUTODUCK [/v] [/e] [/n] [/a] [/u] [/r[dh]] [/t[O-9]]
[/o filename] [/] filenane]
[/f filenane] [/c filenane]

[[/x id]...] [[/d name=text]...] files
Option Description
[/V] Prints detailed status information to the console.
[/€] Suppresses warnings about empty fields.
[/n] Suppresses topic and .HPJ output; only createslog file (if
specified).
[/a] Appends RTF and log-file output to existing files.
[/u] Suppresses sorting of topics.

[/rd]

Generate RTF for Print, using the formatting information

[/rh]

[1[0-9]]

[/ofilename]

[/l filename]

[/f filename]

[/sfilename]

[/cfilename]

[/xid]

[/d
const_name=const
_text]

tagged either as"DOC" or "BOTH". Thisisthe default.
Generate RTF for Help, using the formatting information
tagged either as"HELP" or "BOTH".

Setsthe tab size for example tags. Use the same setting
used in your text editor. The default valueis 8.

Use output file <filename>.

If no output fileis specified, Autoduck creates an output
file with the same filename as the first input file, and
extension .RTF.

Creates topic log <filename> using the topics extracted in
the current build. Thetopic logisalist of topic names
included in the current build.

Useformat file <filename>.

If noformat fileis specified, Autoduck searches for
Autoduck.FMT inthe directory where
AUTODUCK_.EXE is stored, and then in the directories
referenced by the PATH environment variable.

Use supplemental format file <filename>.

Y ou can specify a supplemental format file in addition to
themain format file. Entries in the supplemental format
file override or add to the entriesin the main format file.
Using a supplemental file, you can define project- or
group-specific variations to the default
AUTODUCK.FMT file.

Note that you can also insert your additional entries at the
beginning of the AUTODUCK.FMT file. Thisway, the
local entrieswill be used in place of the standard ones,
and you can avoid specify the /S option each time you
run Autoduck.

Specifiestopic log <filename> for the build. The topic
log specifiesalist of topicsthat can belinkedto and is
generally used to determine what type of formatting
information to output for a paragraph or text tag (for
example, bold if no topic isavailable, and hypertext link
if atopicis aavailable).

Specifies an extraction expression for the build. Only
those topics with @doc flags matching the expression are
extracted. If no extraction flags are specified, al topics
are extracted.

For more information on extraction expressions, see
“Extraction and Filtering Expressions’ and “Conditional
Topic and Paragraph Extraction”.

Defines atext constant "const_name" as "const_text".
Constants can bereferenced in the format file for RTF
output. By defining a constant on the command line, you
can override a constant defined in the format file.

For more information on constants, see the discussion of
the [CONSTANT] section.

Makefile Entries for Autoduck

The DKOALA example project included with Autoduck uses MAKEDOCSMAK, a
Microsoft Visua C++ makefilee MAKEDOCS.MAK is a generic Autoduck makefile that
generates Help and Print documentation files using the set of C/C++ filesin the current

project directory.
You can run it on the command line using:

NMAKE /f makedocs. mak ProjDir="Project Directory" Project="Project Nane"

You can dso run it asaVisua C++ "custom build" entry, using the following custom build
entries:

Bui |l d Command(s):
nmake /f makedocs. mak Project="$(WkspNane)" ProjDir="$(ProjDir)"

Qut put Files(s):
Aut oduck\ $Project. H p
Aut oduck\ $Proj ect . Doc

MAKEDOCS.MAK

The only entry you need to customize below is the ADTOC entry. Make sure it points to the
generic Autoduck CONTENTS.D file or to a custom contents file you have created
specificaly for your project.

Aut oduck MAKEFI LE

Consumer Division, Kids Software Group

#

#

Eric Artzt, Program Manager

#

Internet : erica@ncrosoft.com
#

OUTDIR = $(ProjDir)\Autoduck
TARGET = $(Project)

TITLE = $(TARGET) Help

DOCHDR = $(TARGET) APl Reference

AD = aut oduck. exe

ADTOC = "C:\Bin\Contents. D"

ADHLP = /RH / O$(OUTDI R)\ $(TARGET) . RTF /D "titl e=$(TITLE)"

ADDOC = /RD / O$(OUTDI R)\ $(TARGET) . DOC / D "doc_header =$(DOCHDR) "
ADTAB =8

HC = hcw/ale lc

SOURCE = *.cpp *.h

Hel p and Doc targets

target

if IEXIST("$(OUTDIR)")
md $(OUTDI R)

I endif

target :: $(TARGET).hlp $(TARGET). doc

cl ean:

if exist $(OUTDIR)*.rtf del $(OUTDIR)*.rtf

if exist $(OUTDIR)*. hpj del $(OUTDIR)*. hpj

if exist $(OUTDI R)\ $(TARGET) . doc del $(OUTDI R)\ $(TARGET). doc
if exist $(OUTDI R)\ $(TARGET) . hl p del $(OUTDI R)\ $(TARGET) . hl p

Generate a Help file

$(TARGET).rtf : $(SOURCE) $(ADTOC)
$(AD) $(ADHLP) /t$(ADTAB) $(ADTOC) $(SOURCE)

$(TARGET) . hlp : $(TARGET).rtf
$(HC) $(OUTDI R)\ $(TARGET) . HPJ

Cenerate a print docunentation file

$(TARGET) . doc : $(SOURCE)
$(AD) $(ADDOC) /t $(ADTAB) $(SOURCE)

Creating Links Across Multiple Help Files

To create hyperlinks across multiple Help files, you need the new Win95/Winnt 3.51 Help
compiler (HCW) and viewer (WinHIp32). You will create a Help Contents file that will be
referenced by all the help files, and you will edit the HPJ files produced by Autoduck to
reference the new .CNT file. Luckily, you only need to do this once, since the HPJfile is not
overwritten by Autoduck, and you can save the .CNT file between builds. Make sure your
makefile is not deleting the HPJ on a cleanup pass.

Here's how to do it:

Step 1: Construct a Cross-Build Log File
Construct a cross-build log file listing al the topicsin dl the help files you wish to link. For
example:

autoduck /n /rh /lproject.log projectl*.cpp projectl*.h
autoduck /n /rh /[a /lproject.log project2*.cpp project2*.h
autoduck /n /rh /Ja /lproject.log project3*.cpp project3*.h

Step 2: Create the RTF Files
Build the separate Help RTF files referencing the log file you built earlier. For example:

autoduck /rh /cproject.log projectl*.cpp projectl*. h /oprojectl.rtf
autoduck /rh /cproject.log project2*.cpp project2*. h /oproject2.rtf
autoduck /rh /cproject.log project3*.cpp project3*.h /oproject3.rtf

Now your Autoduck RTF files are hyperlinked across the various help files. If you had not
run the log file build in step (1) and referenced it in step (2), Autoduck would not have
generated hyperlinks for the cross-file topic references.

Step 3: Create a Help Contents (.cnt) File
The new Help compiler provides a contents file feature that can be used to build elaborate
tables of contents for Help files. In this case, we are only using it to make alist of the Help
files we want to associate. Y ou can use the HCW application, or you can edit it yourself.
1 Do File.New to create a new Help Contents file.
2 Click the Index Files button at the bottom of the dialog.

3 IntheIndex Files diaog, click Add to add a help file to your list. Y ou need to type a short
descriptive name and the Help filename. Do this for each help file you want to reference.

4 Savethe .CNT file (eg., in the above example, you might cal it "Project. CNT")
The resulting file contains the following lines:

:lIndex Project 1 Help File=projectl.hlp
;I ndex Project 2 Help File=project2.hlp
:Index Project 3 Help File=project3.hlp

Step 4: Reference the Contents File in the HPJ File

Use the HCW application to edit the Help project file produced by each Autoduck build.
Open the .HPJ file generated by Autoduck and make the following steps:

1 Click the Options button.
2 Click the Files tab.
3 Type the name of the .CNT file you created in step 3.

Step 5: Build the Help Files
Build each help file individually using HCW:

hcw /a /c /e projectl. hpj
hcw /a /c /e project?2. hpj
hcw /a /c /e project3. hpj

Generating Topic Indexes

Autoduck 2.0 includes a new @index tag that |ets you generate topic indexes like the ones
displayed on the table of contents pages of Help files. A topic index can appear in any topic.

By default, atopic index lists al topics included in the current build. Y ou can filter the set of
topics included by specifying filter expressions, for the topic type, extraction tag set, or both.
For more information on extraction expressions, see “Extraction and Filtering Expressions’.

For example, the following @index tag displays all @class and @mfunc topics appearing
under the extraction flags PARSE or OUTPUT:

/1 @ndex Parse and Output | class nfunc | PARSE OUTPUT

Default Contents File

Autoduck includes a sample contents file, CONTENTS.D, that you can use as a start. You
can place this file in the same directory as AUTODUCK.EXE and include it in your
Autoduck builds. You can also customize it to better suit the needs of your projects.

Creating a Module Table of Contents

To create alist of all programming constructs defined in a certain source module, define a
unique extraction flag for that module, then include an @index tag in the @module topic for
that module.

The following example shows the @module comment from the DKOALA.CPP file included
in the Autoduck example project. The extraction flag DKOALA is defined at the top of the
file, and the @index tag included in the module comment generates an index with title
"DKOALA Elements" including all source elements included in the file.

/1 @oc DKOALA

11l

/1 @mwdul e DKOALA. CPP - Koal a Obj ect DLL Chapter 4 |

11l

/1 Examnpl e object inmplenented in a DLL. This object supports

/1 1Unknown and | Persist interfaces, nmeaning it doesn't know

/1 anything nmore than how to return its class ID, but it

/1 denonstrates a conmponent object in a DLL.

/1

/'l @vead3 DKOALA El ements |

/'l @ndex | DKOALA

/1

/1 @ormal Copyright (c)1993 M crosoft Corporation, Al Rights Reserved

Conditional Topic and Paragraph Extraction

You can limit the set of topics extracted in an Autoduck build. Y ou can also code special-case
paragraph tags that are only extracted in certain conditions. To define which topics or
paragraphs are extracted, you use extraction tokens. Extraction tokens are words identifying a
class of topics or paragraphs. For example, you might code some topics as INTERNAL
(Microsoft only) and others as EXTERNAL (for release in external documentation).

Associating Extraction Tags with Topics

Use the @DOC tag to associate extraction tokens with topics. The @DOC tag must precede
any Autoduck topics in the source file. The @DOC tag names a set of extraction tokens to
assign to all following topics.

For example, the following @DOC tag defines EXTERNAL and WAVE tokens for al topics
following the tag:

/1 @oc EXTERNAL WAVE

The extraction tokens set by an @doc tag remain in effect until the end of the sourcefile, or
until the next @doc tag. For example, you can code a single @doc tag at the beginning of the
file, and the extraction tokens specified by that tag are used for al Autoduck topicsin the
source file. To reset the extraction tokens, just add another @DOC tag where you want the
new tokens to take effect.

Associating Extraction Tags with Individual Tags

You can also associate extraction tokens with individual topic or paragraph tags. This feature
can only be used to exclude topics or paragraphs that would atherwise have been included in
abuild, given the @doc flags set in their area of the source file.

In other words, if you have an entire module labeled as @doc EXTERNAL, and you want to
exclude a single topic or paragraph as internal, you can mark that individual tag as
INTERNAL and it will be excluded from an EXTERNAL build.

For example, you might define EXTERNAL and INTERNAL tokens to define which topics
are for external publication and internal publication. At the paragraph level, you might also
define tokens for specific APl variations (for example, WIN4J). To associate extraction
tokens with a paragraph tag, use the following syntax:

/'l @ agname: (TOKEN [TOKEN. . .])

The following example associates a WIN4J token with an @member paragraph tag:

/1@ ag: (WN4J) KANJI _ONLY_FLAG | This flag...
/1@ ag: (WNAG) GERMAN ONLY_FLAG | This flag...

By specifying WIN4J on the Autoduck command line, you could extract just

KANJ_ONLY_FLAG and omit GERMAN_ONLY_FLAG.

In another example, atopic might contain some paragraphs for internal consumption only:

/| @oc EXTERNAL

/'l @unc int | QuickFixFunc | This function does sonething...

11l

/'l @desc A pointer to sonething.

11l

/1 @omm (I NTERNAL) This inplenmentation is flawed and needs to be fixed
/1l for real next tinme.

Specifying Extraction Tokens on the Command Line

The /X command line option lets you specify an extraction expression defining which topics
to extract in the build. For example, the following Autoduck command extracts only those
topics that have both the EXTERNAL and WIN4J tags.

aut oduck /x "EXTERNAL & W N4J" *.c *.h *.d /okanji.rtf

See “Extraction and Filtering Expressions’ for details on the expression syntax.

Extraction and Filtering Expressions

Autoduck 2.0 lets you specify topic extraction sets and topic index sets using simple boolean
expressions. Expressions can be used in the following places:

» Following the /X command-line option, to specify a subset of topics to extract during a
build.

* Inthe $[index] format-file code, to specify a subset of topic titles to include in a topic
index. The $[index] code is exposed to users via the @index tag.

Expression Syntax

Autoduck filtering expressions use a simplified C syntax, using OR and AND operators. Y ou
can group subexpressions with parentheses.

OR Operator

You can use three versions of OR operator:

* Pipe()

e Comma(,)

» Space (no operator, OR is implied)

The different variants are provided for backwards compatibility with version 1x $[index]

codes, and to provide for easy expression entry within Autoduck tag fields, where the pipe
symbol works as a field separator.

For example, the following expressions al evaluate to TRUE if any of the tags ONE, TWO,
or THREE are matched:

ONE TWO THREE
ONE, TWO, THREE
ONE | TWO | THREE

AND Operator

The AND operator uses an ampersand (&).

For example, the following expression evaluates TRUE only if all three of the tags ONE,
TWO, and THREE are matched:

ONE & TWO & THREE

Parenthesized Expressions
Y ou can use parentheses to group expressions.

For example, the following expression evauates TRUE only if the tag EXTERNAL is
present, along with any of ONE, TWO, or THREE:

EXTERNAL & (ONE TWO THREE)

Evaluation Order

Expressions are evaluated from left to right. Parenthesized subexpressions are evaluated first.
Neither operator has precedence.

Using Expressions for Topic Extraction

Use the /X command-line option to specify a subset of topics to extract during a build.

For example, the following Autoduck command line extracts only those topics with the tag
EXTERNAL and any of the tags ONE, TWO, or THREE:

aut oduck /x "EXTERNAL & (ONE TWO THREE) "

The quotations are required to group the expression as a single command-line option.

Using Expressions for Index Filtering

Usethe @index tag to specify atopic index. You can filter by tag name and by extraction
flag. The @index tag has the following syntax:

/I @index <index title> | <topic tag expression> | <extraction flag expression>
You can leave off either of the two expressions, but you must include the field separators.

For example, the following @index tag creates a topic index of @class or @mfunc topics
residing under the @doc flag NTSECURITY :

/1 @ndex NT Security Classes | class nfunc | NTSECURI TY

Topic Logs

Autoduck is often used to generate RTF for use in online documentation (Help). In help
builds, text within paragraph and text tags is often used to generate hypertext links. For
example, afunction name is marked with an <f function> text tag, in a Help build, Autoduck
generates RTF formatting for a hypertext link.

However, a hypertext link needs something to link to, and frequently Autoduck topics
reference topics that may not be present in the current build. For example, an Autoduck topic

block might reference a function that is part of a standard system API not included in the
current Help project. If alink target is unavailable, you don't want to create a hypertext link,
because the link will cause an error in the Help file.

Autoduck provides atopic log feature that lets you test for the existence of a link target, then
generate the appropriate formatting depending on whether the link target exists. When you
run Autoduck, you can specify atopic log file containing alist of topic names. The formatting
file specifies alternate formatting blocks for paragraph or text tags, one used if the link target
exists, and the other used if no link target exists.

Autoduck can also generate a topic log file using the topics extracted in the current build.
This topic log file can be edited and appended to other logs, to create a multi-build log file.
Thus you can build your online documentation files from many different Autoduck builds,
each of which references a central log file naming all the available link targets.

The Topic Log File
A topic log is atext file containing a list of topic names, each listed on a separate line
terminated by a carriage return/line feed pair.
To reference atopic log, you use the Autoduck /C option, as follows:
autoduck /c mdatopic.log /rh *.cpp *.h

To build atopic log using the list of topics extracted in the current build, you use the
Autoduck /L option, as follows:

autoduck /x EXTERNAL /I newfilelog *.cpp *.h

Linking Formatting Specs to the Log File

In the formatting specification file, you can specify aternate formatting information for
paragraph and text tags. Autoduck lets you check the log file for a topic name, and use
different formatting information depending on whether the topic name exists in the log.

To specify conditions for Autoduck formatting information, you use the tag “.IF" statement,
which can be used in formatting blocks for paragraph and text tags and in formatting
diagrams.

Defining Tags and RTF Output Strings

Autoduck draws its tag definitions and RTF formatting information from a formatting file.
The formatting file defines the autoduck tags used in the source files and specifies RTF text
output for those tags. See the provided AUTODUCK.FMT file for examples.

Locating the Formatting File

Since the formatting file defines the complete tagset used within the input files, Autoduck
must have access to aformatting file. When searching for a formatting file, Autoduck looksin
the location named by the /F command-line flag, if used. Otherwise, Autoduck looks in the
current directory; on the search path; and then in the directory in which AUTODUCK.EXE is
located.

Adding Supplemental Autoduck Tags

To add new tags to the basic set provided in AUTODUCK.FMT, create your own
supplementd formatting file.

A supplemental formatting file is organized the same as AUTODUCK.FMT. Y ou can copy
tags or whole sections from AUTODUCK.FMT and modify them as needed. Tags defined in
the supplemental formatting file have precedence over those in the main formatting file, so
you can "override" the formatting strings or other attributes of standard tagsin
AUTODUCK.FMT.

Use the /S command option to reference the supplemental formatting file when you run
Autoduck. You can use multiple supplemental files.

Sections in the Formatting File

The formatting file is divided into a series of sections. Each section has a heading enclosed in
square brackets (for example, [TOPIC] or [PARAGRAPH]). The sections contain one or
more items describing tags or other Autoduck elements.

Sections may be repeated in the formatting file (e.g., you can have multiple [PARAGRAPH]
sections).

The sections are as follows:

Sections

[FILE]
Defines RTF text to insert at the beginning and end of the output file.

[TOPIC]
Defines topic types. A topic isidentified by a unique type name and generates a single
block of reference information in the output file. In an Autoduck input file, a topic begins
with an @doc tag, followed by a topic tag (defined in the [TOPI C] section) identifying the
type of information contained in the topic.

[PARAGRAPH]
Defines paragraph types. Paragraphs appear within topics and describe items like function
parameters, structure fields, and message flags, comments, examples, and other document
elements.

[TEXT]
Defines specia text used within paragraphs. Specia text items identify interesting phrases
or elements (for example, function or structure names) and can have their own formatting
attributes (such as bold or hypertext).

[CONSTANT]
Defines string constants referenced by the formatting strings used for file, topic, paragraph,
and text elements. Constants are useful for storing RTF formatting text in a central
location; for example, you can define a string constant containing RTF formatting codes
for an example paragraph and then reference that constant wherever you use an example
paragraph. In addition, string constants can be defined or overridden using the /D
command line flag, so you can insert build-specific text strings in the RTF outpui.

[INDEX]
Defines the format of indexes inserted in the output file. Anindex is alist of topics; in
Help, indexes can be used to create hypertext links to a series of related topics.

[DIAGRAM]
Defines diagrams to insert within topics. Diagrams are collections of text drawn from topic
paragraphs. Y ou can use diagrams to create syntax diagrams for functions, structures,
enumerations, and other language elements.

Comments
Y ou can type comments within the formatting file. Preface any comment lines with a

semicolon typed at the beginning of the line.

Format Strings

Format strings consist of literal output text mixed with specia entries that reference fields
from the Autoduck tags. In any format-string entry in the formatting file, the format string
begins with the first non-blank character following the equal sign of the entry and ends with
the first entry, section, or comment found following the formatting entry.

For example, the following entry defines aformat string that outputs the text "Field 1."
followed by the contents of field 1 of atag:

.format= Field 1: $1

The following special elements can be present in a format string:

$$
Specifies adollar sign ($) character.

it
Specifies a number (#) character.

$[name]
Specifies a diagram name defined in the [DIAGRAM] section of the formatting file. The
diagram is output in place of the $[name] code.

$lindex:topic_tag_expr:extr_flag_expr]
Specifies an index to output. By default, all topic names processed in the build are output
in the index. By adding the :topic_tag_expr and/or :extr_flag_expr, you can specify a
subset of topics using a specified tag name or residing under a specified combination of
extraction flags. For information on tag or flag expressions, see “Extraction Expressions’.

$(name)
Specifies a string constant name defined in the [CONSTANT] section or passed to
Autoduck viathe /D command-line argument. The constant string is output in place of the
$(name) code.

$n
Specifies a reference to field number n from within the tag. The contents of field number n
are output in place of the $n code. If the source paragraph was identified as an example
paragraph in the [PARAGRAPH] section, the field text is output in example style.

Field numbers start with 1 and end with the count of fields in the tag.

$tagname.n
Specifies a reference to field number n from within tag tagname. Autoduck searches the
topic'stag list for a tag matching tagname. If no matching tag is found, nothing is output.
Field numbers start with 1 and end with the count of fields in the topic tag.

#n
Specifies a reference to field number n from within the tag. The contents of field number n
are output as a WinHelp/Viewer context string; any non-compliant characters are
converted to underscores ().
If the field contains a substring enclosed in angle brackets (eg., TemplateFunc<class b>),
Autoduck strips the substring (including brackets) from the context string.

$id
Outputs the current date.

$!f
Outputs the source filename of the tag. Use uppercase $!F to convert the filename to all
uppercase; with lowercase $!f, the capitalization scheme of the original filename is used.
If referenced in the [FILE] section, this code produces no output.

$lp
Outputs the full path name of the source file from which the tag was extracted. Use $!P to
make the path all uppercase.
If referenced in the [FILE] section, this code produces no output.

Sl

Outputs the source-file line number of the tag.
$lc

Outputs the topic context string.
$n

Outputs the topic name.

If referenced in the [FILE] section, this code produces no output.

[CONSTANT] Section

This section defines constant strings used elsewhere in the formatting file. Constants are
useful for reducing duplication of RTF strings in the formatting file. For example, y

The [CONSTANT] section can contain one or more of the following items:

Entries

OUTPUT=
This item defines the output type for the constants created in later .DEFINE statements.

DEFINE=
Defines a constant string.

Comments

Y ou can use constants to define RTF strings for the standard paragraph styles, then refer to
those constants in your tag format strings. The format for a constant reference is as follows:

$(constant_name)

For exanple, the followi ng topic-tag definition references
constants called "reset," "rule", "rh1," and "normal": |

.tag=struct, doc, 2, 50, $1
.order=field conm ex
.pre=$(reset)$(rul e)\par
$(reset)$(rhl) $1\ par

$[structure]

$(reset)$(normal) $2\ par
$(reset)$(nornmal) Defined in: $!p\par

Also, constants can be overridden by values passed on the command line (use the /d option).
You can define a constant in the formatting file

See Also
[CONSTANT]

DEFINE
OUTPUT

[DIAGRAM] Section

This section defines diagrams. Diagrams are elements built from lists of paragraph tags

defined within atopic. For example, a function syntax declaration is a diagram, asis a
structure declaration.

Inthe [DIAGRAM] section, you identify the following diagram items:

Entries
STAG'=

This required item defines the diagram name and specifies the output type.
PRE=

Specifies a format string to output at the beginning of the diagram.
POST=

Specifies aformat string to output at the end of the diagram.
FORMATFIRST=

Specifies aformat string to use for the first repeating entry in the diagram.
FORMAT=

Specifies the default format string to use for repeating entries in the diagram. This item is

required.
FORMATLAST=

Specifies a format string to use for the last repeating entry in the diagram.
.CANCELIFPRESENT=

Specifies alist of tag names that, if present in the topic, will prevent the diagram from
being generated.

SFT=
Specifies conditions in which this diagram formatting entry should be used. Y ou can

specify multiple “IF’ tags; the conditions specified by the multiple .IF tags have an
implied OR relationship.

Comments
The bracket ([) preceding the [DIAGRAM] section name must appear in the first column (no
leading spaces are allowed).

For the . FORMATFIRST, .FORMATLAST, and .FORMAT items, AUTODUCK provides

the field information for the paragraph corresponding to the current entry. For the .PRE and
.POST items, AUTODUCK provides field information for the topic tag.

Example
The following example creates a function syntax diagram using @param paragraph tags.

[di agram

.tag=function, doc, parm

Pre-formatting string specifies return value, function nane, and
openi ng parenthesis

.pre=\pard \plain $(d_normal){\b $1} {\b $2(}

Post-formatting string specifies closing parenthesis and paragraph
mar k.

.post={\b)}\par
formatfirst={\b $1} {\i $2}
.format={\b , $1} {\i $2}
.cancel i f present =synt ax

See Also

Format Strings
[DIAGRAM]
CANCELIFPRESENT
TAG
PARAGRAPH-IF

[EXTENSION] Section

This section associates source code language types with filename extensions. The source code
language type determines the format of comment blocks within a source file.

In the [EXTENSION] section, you identify a series of filename extensions using the
following item:

Entries
SEXT =

Defines a filename extension and associates a language type with the extension.
.“GENERICDELIM"=

Defines a generic, single-character comment delimiter to use with a "generic" file type not
covered by the standard language types.

Comments

The bracket ([) preceding the EXTENSION section name must appear in the first column (no
leading spaces are alowed).

See Also
[EXTENSION]
EXT
GENERICDELIM

[FILE] Section

This section defines the blocks of text that appear at the beginning and end of the output file.
This information generally consists of the RTF header, including font table, color table, and
style table, and any standard text. You can aso include fields for outputting topic indexes.

Inthe [FILE] section, you identify the following file attributes:

Entries

OUTPUT=
This item defines a new block of file formatting information and specifies the output type
for the information.

PRE=
Specifies a format string to output at the beginning of the output file.

POST=
Specifies aformat string to output at the end of the outpui file.

Comments

The bracket ([) preceding the FILE section name must appear in the first column (no leading
spaces are alowed).

Example
The following [FILE] section example defines an RTF header used in a Help topic file:

[file]

. out put =hel p

.pre={\rtfllansi \deffO\deflangl024
{\fonttb

/'l Font definitions

}

{\col ortbl;
. /'l Color definitions
}

{\styl esheet

. /1 Styl esheet definitions
)

\ pard\plain $(h_heading_1)
$${\ f oot note $$ Contents}

+{\footnote + contents: 0000}
Cont ent s\ par

\pard\plain $(h_indexlink){\uldb Overviews}{\v ctx_overvi ews}\par
\pard\plain $(h_indexlink){\uldb Modul es}{\v ctx_nodul es}\ par
\pard\plain $(h_indexlink){\uldb Classes}{\v ctx_classes}\par
\pard\plain $(h_indexlink){\uldb Functions}{\v ctx_functions}\par
\pard\plain $(h_indexlink){\uldb Messages}{\v ctx_messages}\ par

\ pard\ plain $(h_indexlink){\uldb Types}{\v ctx_types}\par

\ page

\pard\plain $(h_heading_1)
#{\footnote # ctx_overvi ews}

$${\ footnote $$ Contents: Overviews}
+{\footnote + contents: 0010}

Overvi ews\ par

$[i ndex: t opi c]
\ page
/1 Other header topics

See Also

Format Strings

[FILE]

OUTPUT

[INDEX] Section

This section defines the format of WinHelp-style topic indexes. An index consists of a series
of topic names. The index can list al topics in the build, or it can list a subset of topics by
topic type (for example, @func or @api topics). Indexes are inserted in file formatting strings

using the $[INDEX] specifier.

AUTODUCK creates each index entry using the topic name (defined using the .TAG itemin
the [TOPIC] section). It also outputs a context string derived from the topic name. In the
[INDEX] section, you can define the RTF formatting codes surrounding each entry in the

index.

The [INDEX] section can contain the following entries:

Entries
OUTPUT=
Defines a new block of index formatting information for Help or print outpuit.
PRE=
Specifies aformat string to output before the index.
POST=
Specifies aformat string to output after the index.
FORMAT=
Specifies aformat string to output for each index entry. Use the $In and $!c field
identifiers to output the topic name and context string, respectively.
PRENAME=
Obsolete (replaced by .FORMAT.
POSTNAME=
Obsolete (replaced by .FORMAT.
PRECONTEXT=
Obsolete (replaced by .FORMAT.
POSTCONTEXT=
Obsolete (replaced by .FORMAT.
Comments
All format entries are optional.

For more information on formatting strings used within indexes as well as the ${INDEX]

specifier used to insert an index, see “Format Strings’.

Example

The following example shows an [INDEX] section that defines basic WinHelp links for each
index entry. For the printed version, the context strings are hidden:

[i ndex]
; Help RTF index

. out put =hel p
.format=\pard\plain $(h_indexlink){\uldb $!n}{\v $!c}\par

; Doc RTF index

. out put =doc
.format=\pard\plain $(d_i ndexlink)$!n

;. HTML i ndex

. out put =ht m
. format =<L| >$! n</ A>

See Also

Format Strings
[INDEX]
OUTPUT

[PARAGRAPH] Section

This section defines paragraph tags. These tags follow the topic tag and define paragraphs
within the topic. Paragraph tags are not associated with a specific type of topic; once defined,
they can be used within any type of topic.

In the [PARAGRAPH] section, you identify the following paragraph-tag attributes:

Entries
STAG”=
This required item defines the tag name, the number of fields in the tag, and other
characteristics.
A PARSESOURCE”"=
This item defines source-parsing capabilities for the tag. Autoduck can retrieve source text
declared outside the comment block, provided it is provided in a standard location.
SR =
Specifies conditions in which this paragraph tag entry should be used. Y ou can specify
multiple “IF" tags; the conditions specified by the multiple .IF tags have an implied OR
relationship.
SMAP' =
Maps fields in a paragraph tag to atopic tag defined in the same Autoduck entry.
PRE=

Specifies aformat string to output at the beginning of a series of paragraphs of this type.
The .PRE item is often used to define a heading for a series of similar paragraphs.

POST=

Specifies aformat string to output at the end of a series of paragraphs of this type.
FORMAT=

Specifies aformat string to output for each paragraph. Thisitem is required.
Comments

The bracket ([) preceding the [PARAGRAPH] section name must appear in the first column
(no leading spaces are allowed).

See Also

Format Strings
[PARAGRAPH]
PARAGRAPH-IF

MAP

PARSESOURCE

TAG

[TEXT] Section

This section defines text tags for use within the field of atopic or paragraph tag. Specia text

types can identify interesting elements within text (for example, function or parameter
names).

Inthe [TEXT] section, you identify the following items:

Entries
STAG=
Defines a new text tag and specifies basic attributes for the tag. Thisitem is required.
FORMAT=
Specifies aformat string to output for the tag. Thisitem is required.
.“ I F'I'I =
Specifies conditions in which this text tag entry should be used. Y ou can specify multiple

“IF” tags, the conditions specified by the multiple .IF tags have an implied OR
relationship.

Comments

Text formatting strings can use the field specifiers used for Format Strings. For more
information, see “Format Strings’.

Example

The following excerpt from a [TEXT] section defines text tags for special symbols, for
function tags, and message tags.

[text]

. LR R R S O R
1

;. Symbol s

. R R Ik S S I R R R R O
i

.tag=cp, both, 0

.format=\"'a9
.tag=tm both, 0

.format=\"'99
.tag=gt, both, 0
.format =>
.tag=lt, both, 0
.format =<
.tag=tab, both, O
.format=\tab
.tag=nl, both, 0
.format=\1ine
.tag=cnmt, both, O
.format=//

IR R Ik S I R R R O

Functi ons
ER R R R R I I I I I I I I I I I I

.tag=f, help, 1
format={\b $1}

i f=$1=%func. 2

.tag=f, help, 1

format ={\ul db $1}{\v #1}
i f=exists(%$1)

.tag=f, both, 1
format={\b $1}

khkhkhhkhkhhkhkhhhhhkdhhkhhhhhhkhhhhhhhhkhhdhhhhkdhxkx

Messages

R I I

.tag=m help, 1

.format =$1

i f=$1=%$nsg. 1

.tag=m help, 1

format ={\ul db $1}{\v #1}
i f=exists(%$1)

.tag=m both, 1

.format =$1

See Also

Format Strings
[TEXT]
PARAGRAPH-IF
TAG

[TOKEN] Section

This section defines formatting codes for special characters of a particular output type.
Previous versions of Autoduck were hard-coded to output Microsoft Rich Text Format (RTF),
prefacing the special RTF control characters\, {, and } with an escape, and outputting \par
and \tab for the paragraph and tab symbols, respectively.

Autoduck 2.0 introduces the [TOKEN] section, which defines the paragraph, tab, and other
control characters for a given type of output.

Entries

SOUTPUT =
Defines the name for the output type, and specifies a default filename extension for output
files of this type.

SCONTEXT"=
Defines which outputting context the tokens apply to. Thisis used to set different character
tokens for different field types (currently, regular fields versus example fields). For
example, in HTML output, we output a <PAR> code if we are breaking paragraphsin a
regular tag fields, but we don't output a <PAR> code within pre-formatted example fields.

STOKEN”"=
Defines a control character for the output type.

S“HIGHCHARMASK” =
Defines a formatting string to use for high-ASCI| characters.

Example
This section defines the standard "doc" and "help" output types provided in Autoduck 1.x:

[t oken]

. out put =doc, rtf ; defines "doc" output type, with "rtf" extension
.token="p, \ par ; paragraph token

.token="t,\tab ; tab token

.token=\,\\ ; RTF control characters \, {, and }

.token={,\{

.token=},\}

. highcharmask=\"9% ; high ascii characters are mapped to \'xx

.out put =hel p, rtf

.t oken="p, \ par
.token="t,\tab
.token=\,\\
.token={,\{
.token=},\}

. hi ghchar mask=\" %

This section defines the HTML tokens. Note the use of the .CONTEXT entry to cancel use of
the <PAR> code to break paragraphs within examples:

[t oken]

.out put=htm , htm
.token="p, <P>

. token="t, 	
.token=\,\\
.token=<, &l t;
.token=>, > ;

. hi ghchar mask=&#%l;

exanpl e-specific character tokens
. cont ext =exanpl e
. token="p,

See Also

Format Strings
[TOKEN]
HIGHCHARMASK
OUTPUT
CONTEXT

TOKEN

[TOPIC] Section

This section defines topic tags. These tags identify a single documentation unit, or topic. For
example, the standard AUTODUCK.FMT file defines topic tags for functions, structures,
classes, and other C language elements.

Inthe [TOPIC] section, you identify the following topic-tag attributes:

Entries
STAG=
This item defines the tag name, the number of fields in the tag, and other characteristics.

“ORDER"=
This item defines the order in which paragraph tags are output.

SCONTEXT"=
This item defines an aternate identifier (context string) for usein Help.

S“PARSESOURCE” =

This item defines source-parsing capabilities for the tag. Autoduck can retrieve source text
declared outside the comment block, provided it is provided in a standard location.

PRE=
Specifies aformat string to output at the beginning of the topic.

POST=
Specifies aformat string to output at the end of the topic.

Comments

The bracket ([) preceding the TOPIC section name must appear in the first column (no
leading spaces are allowed).

Example
The following [TOPI C] section entries define Help and Print versions of an @FUNC tag:

[topic]

.tag=func, doc, 3, 20, $2
.order=syntax rdesc parm conm ex

. parsesource=function
.pre=$(reset)$(rul e)\par
$(reset)$(headi ng_1) $2\ par

$[function]

$(reset) $(normal) $3\ par

$(reset) $(normal) Defined in: $!p\par

.tag=func, help, 3, 20, $2
.order=syntax rdesc parm comm ex
. parsesour ce=function

. pre=\ page

$(reset)$(heading_1)
##{\ f oot not e ## #2}

$${\ f oot note $$ $2}

K{\footnote K functions; $2}

+{\ footnote + functions: 0000}
$2\ par

$[function]
$(reset) $(normal) $3\ par
$(reset)$(normal)Defined in: $!p\par

See Also

Format Strings
[TOPIC]
PARAGRAPH-IF
CONTEXT
ORDER
PARSESOURCE
TAG

[CONSTANT] Section: .DEFINE Entry

This item defines a string constant that can be used in any formatting string used in the
formatting file. The item consists of the following fields:

[CONSTANT]
.DEFINE sName, sText

Entry Fields

sName
Specifies the name of the constant. Type any name up to 63 characters, with no embedded
spaces, tabs, commas, or semicolons.

sText
Specifies the string constant.

Example

The following item defines a string constant named STY LESO as the text "\s50 \d240":

. define=styl e50,\s50 \sl 240

Comments

Constants can also be defined using the /D command-line argument to Autoduck. Constants
defined on the command line override constants with the same name defined in the format
file.

See Also
[CONSTANT]

DEFINE
OUTPUT

[CONSTANT] Section: .OUTPUT Entry

This item defines the output type for following constant definitions. The .OUTPUT item has
the following format:

[CONSTANT]
OUTPUT sOutputType

Entry Fields

sOutputType
Specifies the output type for the file formatting block. Use one of the following strings:

doc
Specifies the formatting block is used for paper (Word document) output. The
formatting block with this sOutputType value is used if the user specifies the /RD
command-line flag.

help
Specifies the formatting block is used for help (WinHelp/Viewer topic file) output. The
formatting block with this sOutputType value is used if the user specifies the /RH
command-line flag.

both
Specifies the formatting block is used for both document and help output.

See Also
[CONSTANT]

DEFINE
OUTPUT

[DIAGRAM] Section: .CANCELIFPRESENT Entry

This item defines one or more paragraph tags that can cancel the outputting of the diagram.

[DIAGRAM]
.CANCEL|FPRESENT names

Entry Fields
names

Specifies one or more paragraph tag names, with multiple names separated by commas.
See Also

Format Strings
[DIAGRAM]
CANCELIFPRESENT
TAG
PARAGRAPH-IF

[DIAGRAM] Section: .TAG Entry

This item defines a new diagram.

[DIAGRAM]
.TAG name, sOutputType, sParaType

Entry Fields
name
Specifies the name of the diagram. Type any name up to 63 characters, with no embedded
spaces, tabs, commas, or semicolons.
sOutputType
Specifies the output type for the diagram. Use one of the following strings:
sDoc
Specifies paper (Word document) output. The formatting block with this sOutputType
valueis used if the user specifies the /RD command-line flag.
help
Specifies Help (WinHelp/Viewer topic file) output. The formatting block with this
sOutputType value is used if the user specifies the /RH command-line flag.

both
Specifies both document and help output.

sParaType
This item defines the name of the repeating paragraph tag used within the diagram.

See Also

Format Strings
[DIAGRAM]
CANCELIFPRESENT

PARAGRAPH-IF

[EXTENSION] Section: .EXT Entry

This item associates a language type with a filename extension.

[EXTENSION]
.EXT sExtension, sLangType

Entry Fields
sExtension
Filename extension (for example, C, CPP, or BAS). Omit the period.
sLangType
Language type. Use one of the following:
C
C or C++ comment style (// or /*)
ASM
Assembly language comments (;)
BAS
Basic comments (")

Generic
Generic file type. You can use the . GENERICDEL M item to define a single-character
comment delimiter for generic files not covered by the above language types.
Example
The following [EXTENSION] section defines a standard set of filename extensions:

[ext ensi on]

Fi |l ename extension types
. ext =<ext ensi on_t ext>, c|asn]bas

.ext=c,c
. ext =cpp,
. ext =cxx,
.ext=inl,c
.ext=d, c
.ext=h,c

. ext =hpp, c

. ext =hxx, ¢
.ext=asm asm

. ext =bas, bas

. ext =nst, bas

. ext=generic, clw
. genericdelin!

[e BN o]

See Also
[EXTENSION]
EXT
GENERICDELIM

[EXTENSION] Section: .GENERICDELIM Entry

This item specifies a single-character comment delimiter to use for generic file types not
covered by the standard language types. A single-character comment delimiter is similar to
the apostrophe (') comment delimiter in BASIC or the semicolon (;) delimiter in assembly
language; anything following the character on that line is considered part of a comment, and
can therefore be parsed by Autoduck.

[EXTENSION]
.GENERICDELIM sDelim

Entry Fields
sDdlim

Comment delimiter character (must be a single character).
Example

The following [EXTENSION] section defines a source file type with extension .CLW.
Source files with this extension are considered "generic* and have comments delimited with
an exclamation point (1).

[extension]
; Filename extension types ; .ext=, ¢
asn| bas

.ext=c,c

<ot her extensions>
.ext=clw, generic
. genericdelinm!

Therefore, Autoduck would parse the following comment in a .CLW source file:

! @oc

!'@unc return_value | ProcedureNanme | Description
! @omm general comments about the procedure

! @evnot e devel oper notes about each procedure

See Also

[EXTENSION]

EXT

GENERICDELIM

[FILE] Section: .OUTPUT Entry

[FILE]

This item defines a new file formatting block for a specific type of output. Specific formatting

information for the output type is specified using .PRE and .POST items following the
OUTPUT item. The .OUTPUT item has the following format:

[FILE]
OUTPUT sOutputType

Entry Fields
sOutputType
Specifies the output type for the file formatting block. Use one of the following strings:
doc
Specifies the formatting block is used for paper (Word document) output. The
formatting block with this sOutputType value is used if the user specifies the /RD
command-line flag.
help
Specifies the formatting block is used for help (WinHelp/Viewer topic file) output. The

formatting block with this sOutputType value is used if the user specifies the /RH
command-line flag.

both
Specifies the formatting block is used for both document and help output.
Comments

The period preceding the .OUTPUT item text must appear in the first column (no leading
spaces are allowed).

See Also

OUTPUT

[INDEX] Section: .OUTPUT Entry

This item defines a new index formatting block and identifies the output type. Specific
formatting information for the output type is specified using the formatting-string entries

following the .OUTPUT item.
The .OUTPUT item has the following field:

[INDEX]
.OUTPUT sOutputType

Entry Fields

sOutputType
Specifies the output type for the index formatting block. Use one of the following strings:

doc
Specifies the formatting block is used for paper (Word document) output. The
formatting block with this sOutputType value is used if the user specifies the /RD
command-line flag.

help
Specifies the formatting block is used for help (WinHelp/Viewer topic INDEX) output.
The formatting block with this sOutputType value is used if the user specifies the /RH
command-line flag.

both
Specifies the formatting block is used for both document and help output.
Comments
The period preceding the .OUTPUT item text must appear in the first column (no leading
spaces are allowed).
See Also

[INDEX]
OUTPUT

AF Entry

Specifies one or more statements that determine whether a tag should be used in a given
situation. By defining multiple formatting blocks, each of which uses different |F statements,
you can create variable formatting blocks.

This entry can be used with any tag type, including topic, paragraph, text, and diagrams.

For example, atext tag might reference a function name. Y ou might want to make the name
bold, or you might want to make it a hypertext link. If the text tag just references the same
function described by the enclosing topic, a link would return the user to the same topic, so
the function name should be set to bold instead. If alink is appropriate, you still want to
check if there is a destination topic to jump to, so you would check the logging file to see if
the named function is listed there.

The .1 F item can test the following conditions:

» Compare strings in fields: you can check whether afield in a paragraph or text tag matches
afied in atopic tag.

» Log file: you can test to see if atopic nameislisted in the log file.

» Paragraph tag present: you can test to seeif a particular paragraph tag is present within the
topic.

» Field empty: you can test to seeif afield in the paragraph or text tag is empty.

Y ou can combine various testsin asingle “|F" statement. The results of all such tests must
evaluate TRUE (implied AND relationship), otherwise AUTODUCK will not use the
paragraph-formatting entry, and instead try to use the next formatting block for the paragraph
tag.

Y ou can include multiple .| F statements within a single tag definition; the statements have an
implied OR relationship (if any are true, the tag will be used).

The .1 F item specifies the following field:

Entry Fields
sConditionals
Specifies one or more conditional statements, separated by commas:
String Comparison:
field-expressionl=field-expression2
Compares the value of field-expressionl to the value of field-expression2. Field

expressions consist of a mixture of string constants and field references. See the
Comments section for details.

For example, you can use a string comparison to check if a function name referenced in
atext tag is the same as the function named in the topic tag; if it is, you can code it as
bold instead of creating a jump.

Log File Check:
exists(fiel d-expression)
Checks to see if the topic names by field-expression is listed in the log file.

Log file checks are generally used to verify hypertext links: if a destination topic is
named in the log file, create alink; otherwise, don't create a link.
Paragraph Tag Check:
tagexists(tagname)
Checks to see if atag with the specified name was included in the topic. Use this to
determine the tag type of the enclosing topic, or to check whether a paragraph tag of the
specified type is included in the topic.
This is generally used within function diagrams, to determine whether to output a
parameter list or the word "void". It's also used to provide an aternate tag definition to
use within certain types of topics.
Field Empty:
fieldempty(fieldnum)
Checks to see whether a field number fieldnumis empty. Fields are numbered starting at
1
Used to output an alternative formatting block if atag field is empty.
Comments
A field expression is a combination of tag field references and text literals. In afield

expression, you can include any combination of the following constructs (up to six constructs
in afield expression):

$n
References field number n in the tag.

$<n
References field number n in the tag, but strips any template parameter entry (enclosed

in angle brackets) from the end of the field.

$topictag.n
References field number n in the topic tag @topictag. This construct evaluates to an
empty string if the paragraph tag is not contained in a topic block of type @topictag.

literal text
Any literal text, except for spaces, tabs, carriage returns, dollar signs ($), semicolons (;),
commas (,), closing parentheses ()), and equal signs (=).

Example

Following are two simple examples of .| F statements. For more involved examples, see the
AUTODUCK.FMT file and refer to the brief comments there for explanations.

The following expression compares the text in the first tag field with the text in the second
@FUNC topic-tag field:

i f=%$1=%func. 2
The right-hand operand evaluates to a blank if the current topic block is not a @FUNC topic.
The next expression checks to see if a C++ member function is listed in the topic log:

exists(%$1::$%$2)

[PARAGRAPH] Section: .MAP Entry

Maps fields in the paragraph tags to fields in a topic tag defined within the same Autoduck
entry.

[PARAGRAPH]
.MAP sTopicTagname, sFieldRef,sFieldRef,...

Entry Fields

sTopicTagname
Tag name of topic to map.

sFieldRef,sFieldRef, ...
One or more field references, each comma-delimited. Each consecutive field reference
identifies how to fill in the corresponding field in the topic tag. Y ou can use field
references from the current tag or field references from the containing topic tag:

$n
References paragraph tag field "n", where "n" is 1-6.
$t.n
References topic tag field "n", where "n" is 1-6.
Example

The following example maps fields of the @cmember tag to the three topic types that might
be defined in tandem:

.tag=cmenber, help, 4, 2

.pre=$[cl asshdr]

.format=$(reset)$(terml){\uldb $1}{\v #1} {\uldb $2}{\v #class.1__#2}\par
$(reset) $(def 1) $4\ par

.if=exists($class.1::%$<2),fieldenpty(3), exists($1)
. par sesour ce=cl assnenber

. map=nfunc, $1, $t. 1, $2, $4

. map=enum $2, $4, $t. 1

.map=struct, $2, $4, $t. 1

See Also

[PARAGRAPH]
PARAGRAPH-IF
MAP
PARSESOURCE
TAG

[PARAGRAPH] Section: .PARSESOURCE Entry

This item defines source-parsing capabilities of the Autoduck tag. Autoduck can parse C
source information to obtain fields such as parameter types and names and enumeration types.

When Autoduck determines that fields are missing in atag, it determines whether source
parsing is enabled for the tag. If it is enabled, Autoduck looks at the text immediately
preceding the comment block and attempts to parse the missing fields from this text. The
missing fields are inserted at the beginning of the tag structure.

There's another “.PARSESOURCE" statement used with topic tags. Essentialy, the same
statement is used for both topic and paragraph tags, however, the parsing types described in
this section apply more closely to paragraph tags.

[PARAGRAPH]
PARSESOURCE sParseType

Entry Fields
sParseType
This field specifies one of the following values indicating the type of source parsing:
parameter
Parameter type and name inserted into fields 1 and 2.
fidd
Field type and name inserted into fields 1 and 2.
emem
Enumeration name inserted into field 1.
classmember
Member type, name, and (if present) parameter list inserted into fields 1 through 3.
meth
Member type and name inserted into fields 1 and 2.
bparameter
Parameter passing convention (Optiona |ByVd |ByRef) inserted into field 1; type and
name inserted into fields 2 and 3.
jmethod

Modifiers (optiona) - field 1. Type (optiona) - field 2. Class name - field 3. Method
name - field 4. Parameter list - field 5.

jparameter
Type - field 1. Name - field 2 (including optional brackets).
Example
The following PARSESOURCE item defines parameter parsing:

. par sesour ce=par anet er

See Also

[PARAGRAPH]
PARAGRAPH-IF
MAP
PARSESOURCE
TAG

[PARAGRAPH] Section: .TAG Entry

This item defines a new paragraph type and includes the following fields:

[PARAGRAPH]
.TAG sName, sOutputType, nFields, nNestLevel, nlsExampleTag

Entry Fields

sName
Specifies the name of the paragraph. Type any name up to 63 characters, with no
embedded spaces, tabs, commas, or semicolons.

sOutputType
Specifies the output type for the paragraph tag. Use one of the following strings:

sDoc
Specifies paper (Word document) output. The formatting block with this sOutputType
value is used if the user specifies the /RD command-line flag.

help
Specifies Help (WinHelp/Viewer topic file) output. The formatting block with this
sOutputType value is used if the user specifies the /RH command-line flag.

both
Specifies both document and help output.

nFields
Specifies the number of fields in the tag. Type a number from 1 to 6.

nNestLevel
Specifies the nesting level of the tag. The nesting level defines whether the tag is superior
or subordinate to other tags and is used to determine when a series of like tags has started
or ended.

Specifically, output text defined by the .PRE item is output when an paragraph tag has the
same or lower level (higher nNestLevel value) as a preceding tag. Output text defined by
the .POST item is output when an paragraph tag has a higher level (lower nNestLevel
value) than a preceding tag. (In all cases, .PRE or .POST text is only output when a new
type of tag is encountered, eg. when going from tag " @foo" to tag " @bar," not when going
from tag " @foo" to tag " @foo0."

nlsExampleTag
Specifies whether this paragraph contains a code example as its last field. With example
paragraphs, AUTODUCK treats field delimiter (|) characters encountered in the last
paragraph as litera pipe symbols rather than field delimiters. Also, when inserting the
contents of the code-fragment field in the output file, AUTODUCK includes white space
(tabs and spaces).

See Also

[PARAGRAPH]
PARAGRAPH-IF
MAP
PARSESOURCE
TAG

[TEXT] Section: .TAG Entry

Thisitem defines a new format tag as well as basic attributes for the format tag. The item
includes the following fields:

[TEXT]
.TAG sName, sOutputType, nFields

Entry Fields
sName
Specifies the name of the format tag. Type any name up to 63 characters, with no
embedded spaces, tabs, commas, or semicolons.
SOutputType
Specifies the output type for the text tag. Use one of the following strings:
doc
Specifies paper (Word document) output. The formatting block with this sOutputType
value is used if the user specifies the /RD command-line flag.
help
Specifies help (WinHelp/Viewer topic file) output. The formatting block with this
sOutputType value is used if the user specifies the /RH command-line flag.
both
Specifies both document and help output.
nFields
Specifies the number of fields in the tag. Type a number from 1 to 6.
See Also
[TEXT]

PARAGRAPH-IF
TAG

[TOKEN] Section: .HIGHCHARMASK Entry

Defines a formatting string for a high-ASCII character.

[TOKEN]
HIGHCHARMASK sMask

Entry Fields

sMask
Formatting mask. Use a C/C++ printf-style formatting string.

See Also
[TOKEN]
HIGHCHARMASK
OUTPUT
CONTEXT
TOKEN

[TOKEN] Section: .OUTPUT Entry

Defines the output type and name.

[TOKEN]
.OUTPUT sName, sExtension

Entry Fields

sName
Name of the output type, referenced elsewhere in the formatting file and in the /R
command-line flag. The types "help" and "doc" are predefined and map to the /Rh and /Rd
command line flags.

SsExtension
Default filename extension for output type. Used if no output filename is specified on the
command line.

[TOKEN] Section: .CONTEXT Entry

Defines a context (field type) for character tokens. All . TOKEN and . HIGHCHARMASK
entries following the . CONTEXT tag are used within the specified context.

[TOKEN]
.CONTEXT sContext, sExtension

Entry Fields

sContext
Field type. Currently there are two valid entries:

body
Regular body text fields. This is the default value and is assumed if no .CONTEXT
entry has been added.

example
Example text fields.

sExtension
Default filename extension for output type. Used if no output filename is specified on the
command line.

Example

The following example uses the .CONTEXT entry to define alternate formatting for
paragraphs within example text:

[t oken]

.out put=htm , htm
.token="p, <P>

. token="t, 	
.token=\,\\
.token=<, &l t;
.token=>, > ;

. hi ghchar mask=&#%;

; exanpl e-specific character tokens
. cont ext =exanpl e
. token="p,

[TOKEN] Section: .TOKEN Entry

Defines a control token for the output type, and shows how specia characters read from an
Autoduck comment block are translated to control sequences in the output file.

[TOKEN]
.TOKEN chToken

Entry Fields
chToken
Specifies the token. Type a single character to map to the control sequence specified inthe
second argument, or type one of the following specia control tokens:
N
Paragraph token: a paragraph token isinserted in place of a a double carriage return
found within an Autoduck field, or after every line of an Autoduck example field.
M
Tab token: inserted in place of atab. Note that leading tabs are generally stripped from
the field.

See Also

[TOKEN]
HIGHCHARMASK
OUTPUT
CONTEXT

TOKEN

[TOPIC] Section: .CONTEXT Entry

This item defines an alternate identifier (context string) for the topic type. Usethe CONTEXT
item in cases where topics of different tag types might share the same name (for example, you
have an object of name FOO and a property of name FOO). The CONTEXT item lets you
define a unique identifier for the topic, usualy by appending text to the name (for example,
FOO_prop).

The context string is used in topic indexes generated for help files and in the topic log
generated by Autoduck. If no context string is defined, the topic name as defined in the
“TAG” item is used instead.

[TOPIC]
.CONTEXT sContextNameComponents

Entry Fields

sContextNameComponents
Specifies the composition of the context string. The context string consists of static text
and text drawn from the fields of the topic tag.

The sContextNameComponents parameter consists of text intermixed with field references
of the format $n, where n is the field number.

Example

The following CONTEXT item defines a context string for an @PROPERTY tag:

.context=%$1_prop

See Also

[TOPIC]
PARAGRAPH-IF
CONTEXT
ORDER
PARSESOURCE
TAG

[TOPIC] Section: .ORDER Entry

This item defines the order in which paragraph tags are written to the output file.

In the ORDER item, you specify alist of paragraph tag names. These named paragraph types
are output in the specified order. Lower-leve tags (for example, a paragraph tag with level 2
following a paragraph tag with level 1) are kept together with the higher-level tag. For
example, a series of @FLAG tags are output along with the @PARM tags names in the
ORDER item.

[TOPIC]
ORDER

Example
The following ORDER item might be used for a @FUNC tag:

.order=rdesc parm ex comm xr ef

This item specifies that the @RDESC tag be output first (including any subordinate tags
following @RDESC), followed by @PARM tags, following by @EX tags, and so on.

See Also

[TOPIC]
PARAGRAPH-IF
CONTEXT
ORDER
PARSESOURCE
TAG

[TOPIC] Section: .PARSESOURCE Entry

This item defines source-parsing capabilities of the Autoduck tag. Autoduck can parse C
source information to obtain fields such as return type, function name, and class name.

When Autoduck determines that fields are missing in atag, it determines whether source
parsing is enabled for the tag. If it is enabled, Autoduck looks at the text immediately
following the comment block and attempts to parse the missing fields from this text. The
missing fields are inserted at the beginning of the tag structure.

There's another “.PARSESOURCE" statement used with paragraph tags. Essentially, the
same statement is used for both topic and paragraph tags, however, the parsing types
described in this section apply more closely to topic tags.

[TOPIC]
PARSESOURCE sParseType

Entry Fields

sParseType
This field specifies one of the following values indicating the type of source parsing:

function
Autoduck parses the return type and function name from the function header
immediately following the comment block.

memberfunction
Autoduck parses the return type, class name, and function name from the function
header immediately following the comment block.

class
Class name inserted into field 1.

enum
Enumeration name inserted into field 1.
const
Constant type and name inserted into fields 1 and 2.
struct
Structure tag name inserted into field 1 (for C++ style declarations only).

bsub
"Sub" keyword plus any modifiers (Private, Public, etc.) inserted into field 1; subroutine

name inserted into field 2.

bfunc
"Function" keyword plus any modifiers (Private, Public, etc.) inserted into field 1;
function name inserted into field 2; function return type (if present) inserted into field 3.

union
Union name inserted into field 1 (for C++ style declarations only).

jclass
Modifiers (optiond) - field 1. Name - field 2. Extends (optional) - field 3. Implements
(optional) - field 4.

jinterface
Modifiers (optiond) - field 1. Name - field 2.

Example
The following PARSESOURCE item defines function parsing:

. parsesour ce=function

See Also

[TOPIC]
PARAGRAPH-IF
CONTEXT

ORDER

PARSESOURCE

TAG

[TOPIC] Section: .TAG Entry

This item defines a new topic tag as well as basic attributes for the topic tag. The tag includes
the following fields:

[TOPIC]
.TAG sName, sOutputType, nFields, nSortLevel, sTopicNameComponents

Entry Fields
sName

Specifies the name of the tag. Type any name up to 63 characters, with no embedded
spaces, tabs, commas, or semicolons.

sOutputType
Specifies the output type for the topic formatting block. Use one of the following strings:

doc
Specifies the formatting block is used for paper (Word document) output. The
formatting block with this sOutputType vaue is used if the user specifies the /RD
command-line flag.

help
Specifies the formatting block is used for help (WinHelp/Viewer topic file) output. The
formatting block with this sOutputType value is used if the user specifies the /RH
command-line flag.

both
Specifies the formatting block is used for both document and help output.

nFields
Specifies the number of fields in the tag. Type a number from 1 to 6.

nSortLevel
Specifies the sorting level of the topic. This number (from -32768 to 32767) determines
where topics of this type are sorted in relation to other types of topics.
If you specify a negative value, topics of this tag type are sorted in a group, but appear in
the same order encountered within the source files.

sTopicNameComponents
Specifies the composition of the topic name. The topic name consists of static text and text
drawn from the fields of the topic tag. The topic name is used when sorting topics, to
identify topics in error and warning messages, and for constructing unigue context strings
for topics.

The sTopicNameComponents parameter consists of text intermixed with field references of
the format $n, where nis the field number. You can aso use $<n, which strips a C++
template argument list, if present.

Example

The following item defines a topic tag "foo" for use in Help output. The topic tag has three

fields, a sorting weight of 100, and uses the second field as its topic name:

.tag=foo, help, 3, 100, $2

Given thistag, avalid "foo" topic might be defined as follows:

/'l @oc EXTERNAL
/1 @oo BAR | MyFoo | This is a foo!

The topic name for this block is"MyFoo." The next example defines a topic for documenting
C++ member functions:

.tag=nfunc, help, 4, 80, $2::$3

Given this tag, a valid "mfunc" topic with atopic name of "ClassName::MemberFunction”
might be defined as follows:

/'l @oc EXTERNAL
/1 @oo int | ClassName | MenberFunction | This function...

Comments

The period preceding the .TAG text must appear in the first column (no leading spaces are
allowed).

See Also

[TOPIC]
PARAGRAPH-IF
CONTEXT
ORDER
PARSESOURCE
TAG

@doc

The @doc tag identifies a block of Autoduck source. It must be the first Autoduck tag in a
comment block. Any text preceding the @doc tag is ignored.

The @doc tag notifies the Autoduck parser of the presence of Autoduck tag blocks within a
source file. The @doc tag also defines Autoduck identifiers used to determine which topics to
extract from the source file. The identifiers established by a @doc tag remain in force for al
Autoduck topics through the end of the source file or the next @doc tag, whichever comes
first.

Syntax
@doc identifiers

Comments

The identifiers field is a block of text consisting of a whitespace separated list of keywordsto
associate with Autoduck topics following the @doc tag. Y ou can use these keywords to
determine which topics to extract. The /x command-line option identifies which keywords to
process. If the @doc tag names any of the keywords listed in /x command-line option, The
topics associated with the @doc tag are extracted.

Example
The following is an example of the @doc tag:

/1 @oc EXTERNAL M DI _I NPUT

For more information on @DOC, see “ Conditiona Topic and Paragraph Extraction”.

Topic Tags

Topic tags identify the beginning of an Autoduck topic block. Topic blocks are delimited by
topic tags (beginning a new topic block) or by the end of a documentation block.

The following are the standard Autoduck topic tags:

C Topics
These topic tags are used with C elements:
Tag Usage
@enum Enumeration types
@func functions and macros
@module Module descriptions
@msg Messages
@struct Structures
@type Typedefs

C++ Topics
These topic tags are used with C++ elements:
Tag Usage
@class Classes
@mfunc Member functions
@mdata Data members
@mstruct Structure member

@menum Enumeration member

@const Constants

Java Topics
These topic tags are used with Java elements:
Tag Usage
@ijclass Classes
@jinterface Interfaces
@jmethod Methods
OLE2 Topics
These topic tags are used with OLE2 elements:
Tag Usage
@object OLE objects - use this to document the
primary interface for an object
@interface OLE interfaces
@method OLE interface methods
@property OLE object properties
@event OLE object events
BASIC Topics
These topic tags are used with Visual Basic elements:
Tag Usage
@bsub Visua Basic subroutine
@bfunc Visua Basic function
@btype Visual Basic type (structure)

Table of Contents and Overview Topics
These topic tags are used to generate a hierarchical table of contents, and for overviews.

Tag Usage

@contentsl First-level table of contents page

@contents2 Second-level table of contents page

@topic Overview topic
Paragraph Tags

Paragraph tags identify elements of atopic such as function parameters, structure fields,
comments, examples, and other document elements.

The following are the standard Autoduck paragraph tags:

C Tags

These paragraph tags are used in topic tags describing C constructs (as well as C++ and
OLE2 derivatives):

Tag Usage

@emem
@field
@flag
@parm
@par mopt
@par mvar
@rdesc
@globalv

C++ Tags
These paragraph tags are used within C++ topics:

Tag
@access
@base
@cmember
@member

@syntax
@tcarg
@tfarg

Java Tags
These paragraph tags are used within Java topics:

Tag
@jmeth

@jparm

OLEZ2 Tags
These paragraph tags are used within OLE2 topics:

Tag
@meth

@prop
@eve

@rvalue
@ilist

@supint

Enumeration members
Structure fields

Flags (constants)

Parameters

Parameters with default values
Variable-length parameter list
Return values

Global variables (used in @module
topic)

Usage

Access rights (private, protected, public)
Base class name

Class members (new auto-parsing tag)
Class members (old member tag)

Syntax statements for overloaded
member functions

Template class arguments
Template function arguments

Usage
Java method declaration
Java parameter

Usage

Briefly describes a method within a
@object topic.

Briefly describes a property within a
@object topic.

Briefly describes an event within a
@object block

Describes return values

Lists names of interfaces supported by a
property

Names an interface within a @obj ect

block and identify how that object
implements the interface.

@supby

@consumes

BASIC Paragraphs

Used within a @method or @property
topic to identify alist of objects or
interfaces that implement the method or
property.

Used within a @object topic to identify
alist of interfaces that the object
consumes.

These paragraph tags are used with Visual Basic elements:

Tag
@bparm
@bfield

Comments and Annotations

Usage
Visual Basic parameter
Visua Basic type fidd

These paragraph tags are used to add various types of comments and notes to topics:

Tag
@comm
@devnote
@ex
@group
@todo
@xref

Miscellaneous

Usage
Comments
Developer notes
Examples
Subheadings
Undone work
Cross references

These paragraph tags are used for table of contents and other paragraphs:

Tag
@index
@subindex
@normal

@headl
@head2
@head3
@end

Text Tags

Usage

Creates a topic index.

Links to second-level contents pages
Resets formatting to Normal paragraph
style

Heading level 1

Heading level 2

Heading level 3

Ends Autoduck parsing within the
comment block

Text tags identify special text strings within a paragraph, such as function names, class

names, and special characters.

The following are the text tags.

C Tags

These tags are used for C constructs:

Tag Usage

<f Functions

<m Messages

<t Structures and enumeration types

<p Parameters

<e Structure and enumeration elements
C++ Tags

These tags are used for C++ constructs:

Tag Usage

<c Classes

<mf Member functions

<md Data members
OLE2 Tags

These tags are used for OLEZ2 constructs:

Tag Usage

<0 OLE COM objects

<i OLE COM interfaces

<om OLE COM interface methods

<op OLE COM object properties

<oe OLE COM abject events
Graphics

This tag lets you insert a bitmap file:

Tag Usage

<bmp Bitmap graphic file.

Special Characters
These tags represent specia characters:

Tag Usage

<cp Copyright symbol

<tm Trademark symbol

<rtm Registered trademark symbol
<en- En dash character

<em- Em dash character

<gt Greater than symbol

<It Less than symbol

<nl New line character

@access (paragraph-level)

The @access tag is used within the @class tag to create a subheading that identifies the
access rights to a group of items.

Syntax
@access access_specifier

Example
The following example uses two @access tags as subheadings:

/'l @l ass This class factory object creates Koal a objects.
11l

/| @ase public | IClassFactory

class __far CKoal aCl assFactory : public |IClassFactory

{

/| @access Protected Menbers

protected:
/] @menber Reference count.

ULONG m_cRef ;
/'l @ccess Public Menmbers

public:
/] @menmber Constructor.

CKoal aCl assFactory(void);
/'l @menber Destructor.
~CKoal aCl assFact ory(void);

// More definitions.

See Also
@class

@base (paragraph-level)

The @base tag is a paragraph tag used within @class comment blocks to specify the base
class(es) of a C++ class.

Syntax
@base access _specifier | base _classname

Comments
Y ou can use as many @base tags as necessary.

Example
The following example shows the @base tag in use:

/'l @l ass This class encapsul ates a wi ndow.
11
/| @ase public | CCndTarget

class CWhd : public CCndTarget
{

public:

/1 @menmber This function ...

HWND Get Saf eHwnd() const;

See Also
@class

@bfield (paragraph-level)

Documents a Basic type field.

Syntax
@bfield Name | Type | Description

Example
The following examples are equivalent:

'@type | MyType | Exanple of User-Defined Type

"@field i | Integer | An integer.

"@field s | String | A string.

"@field nyString$ | | A string without explicit type nane.
"@field mylnt | | An integer wi thout explicit type name.
Type MyType

i as Integer
s as String
nyString$
my | nt

End Type

' @type Exanple of User-Defined Type

Type WType
i as Integer '@ofield An integer.
s as String "@field A string.

@field A string without explicit type name.
nyString$

' @field An integer without explicit type nane.
my | nt

End Type

See Also
@btype

@bfunc (topic-level)

The @bfunc topic tag documents a Visua Basic function.

Syntax
@bfunc Modifiers | Function Name | Return Type | description

Example
The following examples are equivaent:

" @func Public | RegGetXLValue | Variant | Get XL value fromregistry

" @parm | szSection$ | | Section nane
"@parm | szKey$ | | Key nane
" @parm Optional | vDefaultValues | Variant | Default value if key is mssing

Publ i ¢ Function RegGet XLVal ue(szSection$, szKey$, Optional vDefaultValue As
Variant) As Vari ant

End Function

" @func Get XL value fromregistry

' @yparm Section nane

' @parm Key nane

" @parm Default value if key is mssing

Publ i ¢ Function RegGet XLVal ue(szSection$, szKey$, Optional vDefaultValue As
Variant) As Variant

End Function

Comments
Autoduck can extract al the tag fields (except the description) from the subroutine definition
in the source file.

See Also
@bparm, @bsub

@bparm (paragraph-level)

The @bparm paragraph tag documents a Basic subroutine or function parameter.

Syntax
@bparm Decl_Modifiers | Name | Type | Description

Example
The following examples are equivalent:

" @func Function | RegGet XLValue | Variant | Get XL value fromregistry

" @parm | szSection$ | | Section nane
"@parm | szKey$ | | Key nane
' @parm Optional | vDefaultValues | Variant | Default value if key is mssing

Function RegGet XLVal ue(szSection$, szKey$, Optional vDefaul tValue As Variant) As
Vari ant

End Function

"@func Get XL value fromregistry

' @parm Section nane

' @parm Key name

" @parm Default value if key is mssing

Functi on RegGet XLVal ue(szSection$, szKey$, Optional vDefaultValue As Variant) As
Vari ant

End Function

Comments

Since Visual Basic does not allow inline comments within function or subroutine
declarations, you'll need to place the @bparm tags in the body of the function/subroutine
header.

See Also
@bfunc, @bsub

@bsub (topic-level)

The @bsub topic tag documents a Visual Basic subroutine.

Syntax
@bsub Modifiers | Subroutine Name | description

Example
The following examples are equivalent:

' @sub Private | Excel Regi stryExanples | Sets and Retrieves values fromthe
' Registry

Private Sub Excel Regi stryExanpl es()

End Sub

' @sub Sets and Retrieves values fromthe Registry
Private Sub Excel Regi stryExanpl es()

End Sub

Comments

Autoduck can extract al the tag fields (except the description) from the subroutine definition
in the source file.

See Also
@bfunc, @bparm

@btype (topic-level)
Documents a Visua Basic user-defined type, or structure.

Syntax
@btype Modifiers | Type Name | description

Example
The following examples are equivalent:

' @type | MyType | Exanple of User-Defined Type

"@field i | Integer | An integer.

"@field s | String | A string.

"@field nyString$ | | A string without explicit type nane.
"@field nylnt | | An integer without explicit type nane.
Type MyType

i as |Integer
s as String
nyString$
nmyl nt

End Type

' @type Exanple of User-Defined Type

Type MyType
i as Integer '@field An integer.
s as String ' @field A string.

@field A string without explicit type name.
nmyString$

@field An integer without explicit type nane.

nmyl nt
End Type

Comments

Autoduck can extract all the tag fields (except the description) from the subroutine definition
in the source file.

See Also
@bfield

@cb (topic-level)

The @cb tag is a topic tag used to document C-language callback functions.

Syntax

@ch type | placeholder | description

Paragraph Tags

@rdesc @parm @comm @ex @xref @flag

See Also
@func

@class (topic-level)

The @class tag is atopic tag used to document C++ classes.

Syntax
@class name | description

Example
The following example shows the @class tag in use:

/'l @l ass This class factory object creates Koal a objects.
;;@)ase public | IClassFactory

class __far CKoal aCl assFactory : public |IClassFactory

j/ @ccess Protected Menbers

protected:
/] @menber Reference count.

ULONG m_cRef ;
/'l @access Public Menmbers

public:
/] @menmber Constructor.

CKoal aCl assFactory(void);
/I @menber Destructor.
~CKoal aCl assFact ory(void);
/1 More definitions.

)

The following example shows the use of @class to document a template class:

/'l @l ass Tenplate class

11l

/1 @carg class | T | Aclass to store in stack
11

/1l @carg int | i | Initial size of stack

tenpl ate<class T, int i> class MyStack
{// @menmber Top of stack.

T* pStack;

/] @menber Storage of stack itens

T StackBuffer[i];

/] @member Count of items in stack
int cltems =i * sizeof(T);

public:

/] @member Constructor for stack.
My St ack(void);

/] @nmenber Adds an itemto the stack.
voi d push(const T item);

/1 @menber Returns and renoves the top itemon the stack.

T& pop(void);
b

Comments
Usethe @base tag to specify base classes. You can use as many @base tags as necessary.

To specify atemplate class, add @tcar g paragraph tags to identify the various class template
arguments. The presence of @tcarg tags cause a template specifier to be printed as the topic
title.

See Also

@access @base @cmember @tcarg

@cmember (paragraph-level)

The @cmember tag is used within the @class tag to provide a ssmple description of class
cmembers. It replaces the earlier @member tag.

The tag can parse the first three fields (type, name, and parameter list, if present) from the

class member, assuming the tag immediately precedes the line on which the member is
defined.

Syntax
@cmember type | name | parameter list | description

Comments

The @cmember tag is used with in a @class topic block to provide brief descriptions of class
members.

For class data members, the parameter list field is optional.

Use the @mfunc and @mdata tags to provide complete documentation for member
functions and member data. If you define an @mfunc or @mdata topic matching one of the
@cmember tags, Autoduck will create a hypertext link (assuming you are pre-building the
log file and referencing it using the /C command-line argument.

Example
The following example shows the @cmember tag in use:

/'l @l ass This class factory object creates Koal a objects.
H@Jase public | 1ClassFactory

class __far CKoal aCl assFactory : public IClassFactory

f/ @ccess Protected Menbers

protected:
/1 @menber Reference count.

ULONG m_cRef;
/|l @ccess Public Menbers

public:
/1 @menber Constructor.

CKoal aCl assFactory(void);
/| @menber Destructor.
~CKoal aCl assFact ory(void);
/1 More definitions.

)

See Also

@class @mfunc @mdata

@comm (paragraph-level)

The @comm tag is used to add comments to any Autoduck topic. Unlike other comment tags,
the text associated with this tag is included in external (user ed) builds.

Syntax
@comm comments

Example
The following example shows the @comm tag:
/'l @omm Makes a <c CRect> equal to the intersection of two

/'l existing rectangles. The intersection is the |argest rectangle
/1 contained in both existing rectangles.

See Also
@todo @devnote

@const (topic-level)

The @const tag is a topic tag used to document c++ constants.

Syntax
@const type | name | description

Example
The following example shows the @const tag:

/1l @onst int | iArraySize | Maximum array size.

Y ou can also omit the type and name, provided the comment immediately precedes the
constant declaration:

/'l @onst Maximum array size.

const int iArraySize;

@consumes (paragraph-level)

The @consumes tag lists OLE interfaces consumed by an object. The tag is used within an
@object topic block.

Syntax
@consumes list of interface names

Example
The following example shows @consumes within an @object topic block:

/'l @bject |gorTool Pool Obj Server | This is the MS provided content
/1 object for the tool pool. It is responsible for maintaining all
/1 the lists associated with all the tool pool entries - both

/1 groups and actual elenents.

/1l

/'l @upint |SpecifyPropertyPages | Property page support

11l

/'l @upint <i |Tool Pool Entry> | The means to actually edit the

/1 tool pool

11l

/1l @upint <i |ToolElenSite> | The means to have all the too
/'l pool elenents update thensel ves

11l

/'l @upint |DataObject | Drag/drop & advise support

11

/1 @upint |Dispatch | OLE Automation support

11l

/1 @onsunes | Malloc |Dispatch <i | EnumlfPENTRY>

@contents1 (topic-level)

Creates a main contents page. Y ou should only use one @contentsl topic within your help
file. This topic should sort to the top of the RTF file, to be used as the help table of contents.

Syntax
@contentsl | Contents Heading | Contents Paragraph

Example
The following example, part of the CONTENTS.D file included with Autoduck, creates a
first-level contents page for the help file:

/'l @ontentsl Contents | To display a list of topics by category, click
/1 any of the contents entries below. To display an al phabetical |ist of
/'l topics, choose the |Index button

Comments
Usethe @contents2 and @subindex tags to create second-level contents pages and links.

See Also
@subindex @contents2

@contents2 (topic-level)

Creates a second-level contents page. To link to second-level contents pages from the main
page, use the @subindex paragraph tag. See the CONTENT S.D file, included with
Autoduck, for an example.

Syntax
@contents2 | Contents Heading | Contents Paragraph

See Also
@subindex @contentsl

@devnote (paragraph-level)

The @devnote tag is used to document developer implementation notes.

Syntax
@devnote description

Comments
Thistag is for developers and does not generate output for User-Ed Autoduck builds.

See Also

@todo

@emem (paragraph-level)

The @emem tag is used to document members of enumeration data types.

Syntax
@emem name | description

Comments

Y ou can omit the name field if the comment block containing the @emem tag immediately
follows on the same line as the member declaration.

Example
The following example shows how to document enumeration types and members.

/| @num Col ors.

enum Col ors {

bl ue, | @mem The col or Bl ue.
red, /| @mem The col or Red.
-

See Also

@enum

@end (paragraph-level)
Empty tag used to terminate the Autoduck section of a comment. Insert the @end tag at the
end of the Autoduck tags, and any text following the tag will be ignored.

Syntax
@end

@enum (topic-level)

The @enum tag is a topic tag used to document enumeration data types.

Syntax
@enum enumeration_name | description

Example
The following example shows how to document enumeration types and members.

// @num Col or val ues.

enum Col ors {

bl ue, /] @mem The col or Bl ue.
red, /|l @mem The col or Red.
b

See Also

@emem

@eve (paragraph-level)

The @eve tag names an OLE event supported by an OLE object. The tag is used within an
@object or @interface topic block. Use the description field to describe how the object
supports the event.

Syntax
@eve data type | event name | description

Example
The following example shows the tag used within a @abject topic block:

/ /| NDA2DCanvasVi ew obj ect

/| @bj ect MDA2DCanvasVi ew | The 2D Canvas vi ew object (all ows execution of undo-
abl e

// commands on a 2D Canvas).
/1 @rop Integer|CaneraFitStyle|Determ nes how a canera view is displayed in a

// canvas vi ew wi ndow; one of CanmeraOverridesView, StretchToFillView,
Scal eToFi I | Vi ew,

/1 StretchToVi ewW dt h, StretchToVi ewHei ght, ClipToView
/| @r op Bool ean| CanCacheVi ew| Det er mi nes whet her the canvas can be cached to all ow
/lfaster redraw rates.

/1 @reth HRESULT| CopySel ecti on| Standard cli pboard copy.

/1 @eth HRESULT| Cut Sel ecti on| Standard cli pboard cut.

/1 @ve dick|Qccurs when the user presses and then rel eases a nouse button over an
obj ect .

/| @ve Deactivate | Occurs before a different canvas view is activated
/] @&upi nt | MDA2DCanvasVi ew| For nore information, see <o MDA2DCanvasVi ew>.

/1 @upi nt | MDA2DG aphi cVi ew| Al | ows access to the view of a generic graphic content
obj ect .

@event (topic-level)

The @event tag is atopic tag used to document OLE event.

Syntax
@event interface namelevent name | description

Example
The following example shows the use of the @event tag:

/1 @vent | MDA2DCaner a| d i ck| Cccurs when the user presses and then rel eases a nouse
button over

/1 an object. It may also occur when the value of a control is changed.

11l

/| @upby <o MDA2DGr oupVi ew>, <o MDA2DPai nt >, <o MDA2DMetafil e>,

/1 <o MDA2DRect angl e>, <o MDA2DLi ne>, <o MDA2DLayer Vi ew>, <o MDA2DCanvasVi ew>,
/| <o MDA2DCaner a>

@ex (paragraph-level)

The @ex tag is used to document example source code. Use the similar @iex tag to create an
example continuation paragraph.

The second field of the example tag is output as a monospaced paragraph that preserves the
spaces and indents from the source file.

Syntax
@ex description | example

Comments

Text in the example field can include special Autoduck characters such as |, <, and > without
escaping the characters.

If you use C++ inline comments (//), be sure to place them past the first text column,
otherwise the entire line will be omitted from the topic.

Example
The following example uses the @ex tag:

/1 @x The follow ng exanple adds two objects to a list: |

11l

/1 CObList list;

11

/1 list.AddHead(new CAge(21));

/1 1ist.AddHead(new CAge(40)); [// List now contains (40, 21);
/1 ASSERT(*(CAge*) list.GetTail() == CAge(21));

@field (paragraph-level)

The @field tag is used to document structure members.

Syntax
@field data_type | member_name | description

Comments

Y ou can omit the data_type and member_name fields if the comment block containing the
@field tag immediately follows on the same line as the member declaration.

Example
The following example shows both usages:

/1l @truct PO NT | This structure describes a point.
/1

/l @ield int | x | Specifies the x-coordinate.

11l

/1 @ieldint | y | Specifies the y-coordinate.

typedef struct tagPO NT
{

int x;
int vy;
} PO NT;

/1 @truct PO NT | This structure describes a point.

typedef struct tagPO NT

{

int x; /1 @ield Specifies the x-coordinate.
int vy; /1 @ield Specifies the y-coordinate.
} POl NT;

See Also

@flag @struct

@flag (paragraph-level)

The @flag tag is used to document constant flags for parameters, return values, and
structure fields.

Syntax
@flag name | description

Example
The following example shows the @flag tag (this time used with the @r desc tag):

/1 @unc This function conpares two strings.

11

/1 @desc Returns one of the follow ng val ues:

11l

/Il @lag -1 | If <p szStrl>is smaller.

/Il @lag 1 | If <p szStr2> is smaller.

/1l @lag O | If <p szStrl1l> and <p szStr2> are the sanme.
int strcnp(

char *szStrl, // @arm Specifies a pointer to the first string.
char *szStr2) // @arm Specifies a pointer to the second string.

See Also
@parm @field @rdesc

@func (topic-level)

The @func tag is a topic tag used to document C-language functions.

Syntax
@func type | name | description

Example

The following shows examples of an @func tag. The first variation shows all the information
entered in the tag itself. The second variation lets Autoduck parse information from the
function header.

/'l @unc int | strcnmp | This function conpares two strings.

11

/1 @armchar *| szStrl | Specifies a pointer to the first string.
;; @arm char *| szStr2 | Specifies a pointer to the second string.
11l

/'l @desc Returns one of the follow ng val ues:

11l

/I @lag -1 | If <p szStrl> is smaller.

/I @lag 1 | If <p szStr2> is smaller.

/Il @lag O | If <p szStrl> and <p szStr2> are the sane.

int strcnp(char *szStr1l, char *szStr?2)

/1 @unc This function conpares two strings.

/1

/'l @desc Returns one of the follow ng val ues:
/1

/I @lag -1 | If <p szStrl> is smaller.

/I @lag 1 | If <p szStr2> is smaller.

/1 @lag O | If <p szStrl> and <p szStr2> are the sane.

int strcnp(
char *szStrl, // @arm Specifies a pointer to the first string.
char *szStr2) [// @arm Specifies a pointer to the second string.

Comments

The type and name fields can both be omitted if the function declaration immediately follows
the comment block in which the @func tag was used.

Paragraph Tags

@rdesc @parm @comm @ex @xref @flag

See Also

@ch

@globalv (paragraph-level)

The @globalv tag is used to document global variables and is generally used inside an
@module topic.

Syntax
@globalv type name description

Example
The following example shows the @globalv tag:

/* @oc DKOALA

* @modul e DKOALA. CPP - Koal a Object DLL Chapter 4 |

* Exanpl e object inplemented in a DLL. This object supports

* | Unknown and | Persist interfaces, neaning it doesn't know

* anything nore than how to return its class ID, but it

* denonstrates a conmponent object in a DLL.

* Copyright (c)1993 M crosoft Corporation, Al Rights Reserved

* @ndex | DKOALA

* @wormal Kraig Brockschm dt, Software Design Engi neer
* M crosoft Systens Devel oper Rel ations

* Aut oduck exanple by Eric Artzt (erica@m crosoft.com

//Do this once in the entire build
#define | Nl TGUI DS

#i ncl ude "dkoal a. h"

/| @l obal v Count nunber of objects
ULONG g_cObj =0;

/1 @l obal v Count number of | ocks
ULONG g_clLock=0;

@group (paragraph-level)

The @group tag is used to add a subheading within any Autoduck topic. Y ou must follow the
@group paragraph with a tag paragraph to reset the tag type; otherwise, al following
paragraphs appear in bold.

Syntax

@group group heading

See Also
@todo @devnote

@head1 (paragraph-level)

Inserts alevel 1 heading (style "Heading 1").

Syntax
@headl Heading Text | Paragraph text...

@head2 (paragraph-level)

Inserts alevel 2 heading (style "Heading 2").

Syntax
@head2 Heading Text | Paragraph text...

@head3 (paragraph-level)

Inserts alevel 3 heading (style "Heading 3").

Syntax
@head3 Heading Text | Paragraph text...

@iex (paragraph-level)

The @iex tag creates an example paragraph (a monospaced paragraph that preserves the
spaces and indents from the source file).

Syntax

@iex example

Comments
Text in the example field can include special Autoduck characters such as |, <, and > without
escaping the characters.

If you use C++ inline comments (//), be sure to place them past the first text column,
otherwise the entire line will be omitted from the topic.

Example
The following example uses the @iex tag:

/'l @ ex

/1 CObList list;

Il

/1 1list.AddHead(new CAge(21));

/1 1list.AddHead(new CAge(40)); // List now contains (40, 21);
/1 ASSERT(*(CAge*) list.CGetTail() == CAge(21));

@ilist (paragraph-level)
The @ilist tag is used to list a series of interfaces supported by a property. Only the names of
the supported interfaces appear; not a description of the interface.

Syntax
@ilist interfaceName, interfaceName, ...

Example
The following example shows the use of the @ilist tag:

/1@!1ist |Pixel Map, |PersistStorage, |Unknown

See Also
@prop

@index (paragraph-level)

Inserts atopic index. For more information on topic indexes, see “ Generating Topic Indexes’.

Syntax
@index tag-extract-expression | topic-extract-expression

Example

For example, the following @index tag displays al @class and @mfunc topics appearing
under the extraction flags PARSE or OUTPUT:

/1 @ndex class nfunc | PARSE OUTPUT

See Also
@contentsl @contents?2 @index

@interface (topic-level)

The @interface tag is atopic tag used to document OLE interfaces.

Syntax

@interface name | description

Paragraph Tags

@meth @prop @supby @xref @comm

See Also
@object

@jclass (topic-level)

The @jclass tag is atopic tag used to document java classes. All the fields except for the
description can be automatically parsed - for better future compatibility, you should encode
only the description in the tag.

Syntax

@jclass modifier_list | class_name | extends_classname | implements_classname list |
description

Example

The following example shows the tag in use:

/1 @class UpdateControls class, whoopee.
11l

/1

public class UpdateControls extends Applet
{
/1 field declarations omtted
/1 @ meth, jmethod UpdateControls class constructor

publ i ¢ updat econtrol s()

{

/1 do stuff

}

/1 @nmeth,jmethod | nformation support for the applet

public String getAppletlnfo()
{

/] do stuff

/1 @neth,jmethod Pai nt Handl er
/1 @@ par m Sonet hing to paint

public void paint(Graphics Qg)
{
}

/1 @ meth, jmet hod

/1 The | oadcontrols() function is called fromthe VBScript code after the page
/1l has conpletely |oaded. VBScript passes in all of the controls so the Java
/1 class can nodify them

public void | oadControl s(

Obj ect htm List, /1 @ parmthe |ist
Cbj ect htm Button, /1 @ parm t he button
Obj ect htm Text, /] @@ parm t he text

bj ect htm Checkbox) { /1 @@ parm t he checkbox

/] do stuff
}
}
See Also

@jclass @jinterface @jmeth @jmethod

@jinterface (topic-level)

The @jinterface tag is atopic tag used to document javainterfaces. All the fields except for
the description can be automatically parsed - for better future compatibility, you should
encode only the description in the tag.

Syntax
@jinterface modifier_list | interface_name | description

See Also
@jclass @jinterface @jmeth @jmethod

@jmeth (paragraph-level)

The @jmeth tag is a paragraph tag used to document java methods. This tag can be used with
the @j meth tag if you want to create a separate topic definition for the method.

All the fields except for the description can be automatically parsed - for better future
compatibility, you should encode only the description in the tag.

Syntax

@jmeth [modifier_list] | [type returned] | method name | [throws name] | [parameter list] |
description

Example

The following example shows the tag in use:

/1
/1 @class UpdateControls class, whoopee.
11
I

public class UpdateControls extends Applet
{

/1l field declarations omtted

/1 @nmeth,jmethod UpdateControls class constructor

publ i ¢ updat econtrol s()

{

/] do stuff

}

/1 @meth,jmethod Information support for the appl et

public String getAppletlnfo()
{

/] do stuff

/1 @ meth, jmethod Paint Handl er
/1 @@ par m Sonet hing to paint

public void paint(Graphics g)
{
}

/1 @ meth, jmethod

/1 The | oadcontrols() function is called fromthe VBScript code after the page
/'l has conmpletely |oaded. VBScript passes in all of the controls so the Java
/1 class can nodify them

public void | oadControl s(

Obj ect htm List, /1 @ parm the |ist
Obj ect htm Button, /1 @ parm t he button
Obj ect htm Text, /1 @@ parm t he text

bj ect htm Checkbox) { /1 @ parm t he checkbox
/1 do stuff

}
}

See Also
@jclass @jinterface @jmeth @jmethod

@jmethod (topic-level)

The @jmethod tag is a topic tag used to document java methods. This tag is normally used
with the @jmeth tag - you create a combined tag definition to smultaneously define a
paragraph tag within the class (@jmeth) and the topic tag to define a separate topic
(@jmethod).

For auto-parsing, you must use the @jmeth paragraph tag. The @j method topic tag has no
built-in parsing capability.

Syntax

@jmethod [modifier_list] | [type returned] | class name | method name | [throws name] |
description

Example
The following example shows the tag in use:

I

/1 @class UpdateControls class, whoopee.
11
I

public class UpdateControls extends Applet
{

/1l field declarations omtted

/1 @nmeth,jmethod UpdateControls class constructor

publ i ¢ updat econtrol s()

{

/] do stuff

}

/1 @meth,jmethod Information support for the appl et

public String getAppletlnfo()
{

/] do stuff

/1 @neth,jmethod Pai nt Handl er
/] @@ par m Sonet hing to paint

public void paint(Graphics g)
{
}

/1 @neth,jmethod

/'l The | oadcontrols() function is called fromthe VBScript code after the page
/'l has completely | oaded. VBScript passes in all of the controls so the Java
/1 class can nodify them

public void | oadControl s(

Obj ect htm List, /1 @ parm the |ist
Obj ect htm Button, /1 @@ parm t he button
Obj ect htm Text, /1 @ parm the text

Obj ect htnl Checkbox) { /1 @@ parm t he checkbox

/] do stuff

}
}

See Also
@jclass @jinterface @jmeth @jmethod

@jparm (paragraph-level)

The @jparm tag is a paragraph tag used to document java method parameters. This tag must
be used as a supplemental tag within a @j method block.

All the fields except for the description can be automatically parsed - for better future
compatibility, you should encode only the description in the tag.

Autoduck imposes the following restrictions on comment block placement. See the example
for clarification - there are examples of each valid format.

If the parameter declaration immediately follows the method name declaration on the same
line, the comment block containing the @jparm tag must appear on a line before the method
header. See the "paint()" method in the example.

If the parameter declaration is on aline by itself, the @jparm tag can appear following the
source declaration. See the "loadcontrols()" method in the example.

Syntax
@jparm type_name | parameter_name | description

Example
The following example shows the tag in use:

I
/1 @class UpdateControls class, whoopee.
11l

public class UpdateControls extends Appl et
{

/Il field declarations omtted

/1 @nmeth,jmethod UpdateControls class constructor

publ i c updatecontrol s()

{

/1l do stuff

}

/1 @meth,jmethod Information support for the applet

public String getAppletlnfo()
{

/] do stuff

/1 @neth,jmethod Pai nt Handl er
/1 @@ par m Sonet hing to paint

public void paint(Graphics Qg)
{
}

/1 @ meth, jmet hod

/'l The | oadcontrol s() function is called fromthe VBScript code after the page
/'l has conpletely |oaded. VBScript passes in all of the controls so the Java
/1 class can nodify them

public void | oadControl s(

Obj ect htm List, /1 @ parmthe |ist
Cbj ect htm Button, /1 @ parm t he button
Obj ect htm Text, /| @@ parm t he text

bj ect htm Checkbox) { /1 @@ parm t he checkbox

/] do stuff
}
}
See Also

@jclass @jinterface @jmeth @jmethod

@mdata (topic-level)

The @mdata tag is a topic tag used to document class data members.

Syntax
@mdata data_type | class_name | member_name | description

Example
The following example shows the @mdata tag in use:

/]l @data HAND | Cwhd | m hWhd | Contains the wi ndow handle for the
/1 <c CWwhd>.

See Also
@class @mfunc @access

@member (paragraph-level)

The @member tag is used within the @class tag to provide a simple description of class
members.

NOTE: The @cmember tag is preferred for documenting class members; it can automatically
parse the type, name, and parameter list from a class member variable or member function.

Syntax
@member name | description

Comments

The @member tag can only be used within an @class topic block. Use the @mfunc and
@mdata tags to provide complete documentation for member functions and member data.
See Also

@cmember

@menum (topic-level)
The @menum tag is a topic tag used to document enumeration types defined as members of

classes.

Syntax
@menum class_name | enumeration_name | description

Example
The following examples show the @menum tag:

/'l @l ass Exanple of class with nested constructs.

cl ass CWCl ass

{
public:
/| @menber, nstruct Parsing text structure

struct PARSETEXT
{

char *szBase,; //@ield Base of text to parse
char *szCur; //@ield Current parsing |location

b

/I @menber, menum Par si ng types

enum PARSETYPES
{

parseStruct = 1, // @®enem C structure - gets struct tagnane
par seCl ass, /| @mem C++ class - gets class nane

par seFunc, /| @@mem Function - gets return type and nane
b

}

Paragraph Tags

@emem

See Also

@cmember @class @emem @mstruct “Nesting Topics Inside Topics’

@meth (paragraph-level)

The @meth tag names an OLE method supported by an OLE object. The tag is used within
an @object topic block. Use the description field to describe how the object supports the
method.

Syntax
@meth return valuelmethod name | description

@method (topic-level)

The @method tag is atopic tag used to document OLE interface methods.

Syntax
@method return type | interface name | method name | description

Example
The following example shows the use of the @method tag:

/1 @et hod HRESULT| | MDA2DCanvasVi ew] CopySel ection | Standard clipboard copy.

Paragraph Tags
@supby @parm @rvalue @ex

@mfunc (topic-level)

The @mfunc tag is a topic tag used to document class member functions.

Syntax
@mfunc return_type | class_name | function_name | description

Example
The following example shows two variations of the @mfunc tag, one using full information
typed in the tag fields, and the other using the source parsing feature:

// @func void | CString | MakeUpper | This function converts the
/1l string text to uppercase.

void CString:: MakeUpper();
/'l @func This function converts the string text to uppercase.
void CString:: MakeUpper ();

// @func Tenpl ate exanple with class- and function-level tenplate
/1 args.

11l

/l@farg class | B| A class to pass

11l

/l@carg class | T | Aclass to store in stack

//@carg int | i | Initial size of stack

tenplate< class T, int i >
MySt ack< T, i>::popperlink<class B>(void)

{
}

Comments

The return_type, class_name, and function_name fields can all be omitted if the function
declaration immediately follows the comment block in which the @mfunc tag was used.

See Also
@class @mdata @access @tcarg @tfarg

@module (topic-level)

The @module tag is a topic tag used to document source code modules.

Syntax
@module name | description

Example
The following example shows a module comment:

/* @loc DKOALA

* @mdul e DKOALA. CPP - Koal a Object DLL Chapter 4 |

* Exanpl e object inplenented in a DLL. This object supports

* | Unknown and | Persist interfaces, neaning it doesn't know

* anything nore than how to return its class ID, but it

* denonstrates a conponent object in a DLL.

* Copyright (c)1993 Mcrosoft Corporation, Al Rights Reserved
* @ndex | DKOALA

* @ormal Kraig Brockschm dt, Software Design Engineer
* Mcrosoft Systems Devel oper Rel ations

* Aut oduck exanple by Eric Artzt (erica@ncrosoft.com
*/

//Do this once in the entire build
#define | Nl TGUI DS

#i ncl ude "dkoal a. h"

/| @l obal v Count nunber of objects
ULONG g_cObj =0;

/| @! obal v Count number of | ocks
ULONG g_clLock=0;

Comments
Thistag is generaly just used by developers to record comments for a code module.

See Also
@globalv

@msg (topic-level)

The @msg tag is atopic tag used to document Windows-style messages.

Syntax
@msg name | description

Example
The following example shows the @msg tag:

/1 @sg WM TIMER | This nessage notifies the window of a timer event.

Paragraph Tags
@rdesc @parm @comm @ex @xref @flag

@mestruct (topic-level)

The @mstruct tag is atopic tag used to document data structures defined as members of
classes.

Syntax
@mstruct class_name | structure_name | description

Example
The following examples show the @mstruct tag:

/'l @l ass Exanple of class with nested constructs.

class CWCl ass

{
public:
/| @menmber, mstruct Parsing text structure

struct PARSETEXT

{

char *szBase; /1 @@ield Base of text to parse
char *szCur; /1 @@ield Current parsing |ocation
b

/1 @menber, menum Par si ng types

enum PARSETYPES
{

parseStruct = 1, //@@mem C structure - gets struct tagnanme
par seCl ass, /| @@nmem C++ class - gets class nane
par seFunc, /| @@mem Function - gets return type and nane

I

}

Paragraph Tags
@field @flag

See Also
@cmember @class @field @mstruct “Nesting Topics Inside Topics’

@normal (paragraph-level)

Inserts a body text paragraph (style "Normal™).

Syntax
@normal Paragraph text...

@object (topic-level)
The @object tag is atopic tag used to document OLE objects.

Syntax
@object name | description

Example
The following example shows the use of the @object tag:

/1 Point2D obj ect

;; @bj ect Poi nt 2D | Represents a two-di mensi onal coordinate.
;; @r op long | X | X-coordinate (read/write)

;; @r op long | Y| Y-coordinate (read/write)

;; @ upi nt | Point2D | Primary interface.

;; @upi nt DPoi nt 2D | Exposes | Point2D for OLE Automati on.

;; @upi nt | Di spatch | Equival ent to DPoi nt2D.

Paragraph Tags

@meth @prop @supint @consumes

@parm (paragraph-level)

The @parm tag is used to document function and message parameters.

Syntax
@parm data_type | parameter_name | description

Comments

Y ou can omit the data_type and parameter_name fields if the comment block containing the
@parm tag immediately follows on the same line as the parameter declaration.

Example
The following example shows both usages:

// @unc int | strcnmp | This function conpares two strings.

/1

/'l @armchar *| szStrl | Specifies a pointer to the first string.
/1

/'l @armchar *| szStr2 | Specifies a pointer to the second string.
/1

/'l @desc Returns one of the follow ng val ues:

/1

/Il @lag -1 If <p szStrl1l> is smaller.

|
/I @lag 1 | If <p szStr2> is smaller.
/1 @lag O | If <p szStrl> and <p szStr2> are the sane.

int strcnp(char *szStrl, char *szStr?2)

/1 @unc This function conpares two strings.

11l

/'l @desc Returns one of the follow ng val ues:
11

/Il @lag -1 If <p szStr1> is smaller.

|
/Il @lag 1 | If <p szStr2>is smaller.
/1l @lag O | If <p szStrl> and <p szStr2> are the sane.

int strcm(
char *szStrl, // @arm Specifies a pointer to the first string.
char *szStr2) [// @arm Specifies a pointer to the second string.

See Also
@par mopt @flag @func @mfunc @method

@parmopt (paragraph-level)

The @parmopt tag is used to document optional parameters for functions and member
functions.

Syntax
@parm data_type | parameter_name | default_value description

Comments

You can omit al fields except for description if the source declaration immediately precedes
the @parmopt comment block, or if the function declaration follows the comment header.

Example
The following examples shows the various usages:

/1 @Tfunc void | MyClass | Foo | My Function Foo
/1 @armpt ULONG| a | 1| [in] value of a
/1 @armopt ULONG | b | 2| [in] value of b

voi d MyCl ass: : Foo(ULONG a=1, ULONG b=2)
{1

/1 @rfunc My Function Foo

void MyCl ass: : Foo(

ULONG a=1, // @arnopt [in] value of a
ULONG b=2 // @arnopt [in] value of b
)

{1}

/1 @func My Function Foo
/1 @armopt [in] value of a
/1 @arnopt [in] value of b

voi d MyCl ass:: Foo(ULONG a=1, ULONG b=2)
{3

See Also
@parm @flag @func @mfunc @method

@parmvar (paragraph-level)

The @parmvar tag is used to document a variable arguments list.

Syntax
@parmvar description

Example
The following example shows how the @par mvar tag used within a function block:

// @unc Prints a bunch of stuff to the console.
/1

int strcnmp(
char *szFor mat, /'l @armFormatting string with one or nore
/1 vari abl e argunent codes.
) /1 @armvar One or nore paraneters matching
/1 the argunent codes in <p szFormat>.
See Also
@parm @func

@prop (paragraph-level)

The @prop tag names an OLE property supported by an OLE object. The tag is used within
an @abject topic block. Use the description field to describe how the object supports the
property.

Syntax

@prop data type | property name | description

Example
The following example shows the tag used within a @abject topic block:

/1 Point 2D obj ect
11l

/'l @bject Poi nt 2D | Represents a two-di nmensi onal coordinate.
H @pr op long | X | X-coordinate (read/write)

;; @pr op long | Y| Y-coordinate (read/write)

;; @upi nt IPoint2D | Primary interface.

11l
/1 @upint | Di spatch | Equival ent to DPoi nt2D.

@property (topic-level)
The @property tag is atopic tag used to document OLE properties.

Syntax
@property data type | interface name |property name | description

Example
The following example shows the use of the @pr operty tag:

/| NDA2DLi ne property Endpointl (r/w)

11l

/] @ropertyPoint2D | | MDA2DLi ne | Endpointl | Coordinate of starting endpoint of
line relative to

/'l the layer's origin, in layer coordinate units. (read/wite)

11l

/'l @upby MDA2DLi ne

11l

/1 @omm The coordinate value can be in the range -2147483648

/1 to 2147483647, inclusive, though some methods that

11 accept Endpointl paranmeters may restrict the value to
11 the range -32768 to 32767.

See Also

@supby

@rdesc (paragraph-level)

The @rdesctag is used to document return values of functions and messages.

Syntax
@r desc description

Comments

For functions, the return value type is documented with the @func or @mfunc tag. For
messages, the return value type is implicit—it is the type of the function receiving the
message.

Example
The following example shows the @r desc tag:

/1 @unc This function conpares two strings.

11l

/'l @desc Returns one of the follow ng val ues:

11l

/I @lag -1 | If <p szStrl> is smaller.

/I @lag 1 | If <p szStr2> is smaller.

/1 @lag O | If <p szStrl> and <p szStr2> are the sane.
int strcm(

char *szStrl1, [// @arm Specifies a pointer to the first string.
char *szStr2) [// @arm Specifies a pointer to the second string.

@rvalue (paragraph-level)

The @rvalue tag is used to document the HRESULT status codes and their meanings.

Syntax
@rvalue status code | description

Example
The following example uses the @rvalue tag:

/'l @value S_OK | The operation succeeded.

@struct (topic-level)

The @struct tag is a topic tag used to document data structures.

Syntax
@struct structure_name | description

Example
The following examples show the @struct tag:

/'l @truct PO NT | This structure describes a point.
11l

/1 @ield int | x | Specifies the x-coordinate.

Il

/l @ield int | y | Specifies the y-coordinate.

typedef struct tagPO NT
{

int x;
int vy;
} PO NT;

/'l @truct PO NT | This structure describes a point.

typedef struct tagPO NT

{

int x; /1 @ield Specifies the x-coordinate.
int vy; /1l @ield Specifies the y-coordinate.
} POINT;

Paragraph Tags

@field @flag

See Also

©@field @mstruct

@subindex (paragraph-level)

Inserts alink to a second-level index page. Use the @contents2 tag to create a second-level
index page.

Syntax
@subindex | Subindex Title

Example
The following tag creates alink to a subindex caled "COM Elements':

/| @ubi ndex COM El enent s

See Also
@contentsl @contents2 @index

@supby (paragraph-level)

The @supby tag lists OLE objects or interfaces that support a method or property. Thetag is
used within a @method or @property topic block.

Syntax
@supby list of objects

Example
The following example shows @supby within a @pr operty topic block:

Il

/1 @ropertyPoint2D | | MDA2DLine | Endpointl | Coordinate of starting endpoint of
line relative to

/1l the layer's origin, in layer coordinate units. (read/wite)

11l

/1 @upby MDA2DLi ne

Il

/1 @onmm The coordinate value can be in the range -2147483648

11 to 2147483647, inclusive, though some methods that
11 accept Endpointl paranmeters may restrict the value to
Il the range -32768 to 32767.

@supint (paragraph-level)

The @supint tag names an OLE interface supported by an OLE object. The tag is used within
an @object topic block. Use the description field to describe how the object supports the
interface.

Syntax
@supint interface name | description

Example
The following example shows the tag used within a @abject topic block:

/1 Point 2D obj ect

H @bj ect Poi nt 2D | Represents a two-di mensional coordinate.
;; @pr op long | X | X-coordinate (read/write)

;; @pr op long | Y| Y-coordinate (read/write)

H @upi nt IPoint2D | Primary interface.

;; @upi nt DPoi nt 2D | Exposes | Point2D for OLE Automation.

;; @upi nt | Di spatch | Equival ent to DPoi nt 2D.

@syntax (paragraph-level)

The @syntax tag is used to document syntax for overloaded C++ member functions.

Syntax
@syntax syntax_statement

Comments

If thistag is present in a @func or @mfunc topic block, the automatically-generated syntax
statement is omitted and replaced by the text specified in syntax_statement.

Example
The following example shows the @syntax tag in use:

/1 @Tfunc | CString | CString | Constructs a <nf CString>.
11

/1 @yntax CString();

/'l @yntax CString(const CString& stringSrc);

/1 @yntax CString(char ch, int nRepeat = 1);

/'l @yntax CString(const char* psz);

/'l @yntax CString(const char* pch, int nLength);
11

/1 @arm const CString& stringSrc | Specifies ...
/'l @armchar | ch | Specifies..

/1 @armint | nRepeat | Specifies...

11l

/'l etc etc.

See Also
@mfunc

@tcarg (paragraph-level)

The @tcarg tag is used to document template arguments for C++ class templates.

Syntax
@tcarg data_type | argument_name | description

Example
The following example shows the @tcarg tag used within class and member function
definitions:

/'l @l ass Tenpl ate cl ass
/l@carg class | T | Aclass to store in stack
/l@carg int | i | Initial size of stack

tenpl ate<class T, int i> class MyStack

...}

/1 @rfunc Tenpl ate constructor function
//@carg class | T | Aclass to store in stack
//@carg int | i | Initial size of stack

tenplate< class T, int i >
MyStack< T, i>::MStack(void)
{

}

See Also
@class @mfunc

@tfarg (paragraph-level)

The @tfarg tag is used to document template arguments for C++ member functions and for
functions.

Syntax
@tfarg data_type | argument_name | description

Example

The following example shows the @tfar g tag used within function and member function
definitions:

/1 @unc Tenpl ate function test
/l@farg class | B | A class.
/l@farg class | C | Another class.

tenpl ate<cl ass B, class C>

int Tenpl at eFunc(

B foo, /1 @arm A Foo
C bar) /I @arm A Bar
{

}

/'l @ unc Function tenplate args

/l@farg class | B | A class to pass

//@carg class | T | Aclass to store in stack
/l@carg int | i | Initial size of stack

tenplate< class T, int i >

MySt ack< T, i>::popperlink<class B>(void)
{

}

See Also
@func @mfunc

@todo (paragraph-level)

The @todo tag is used to document comments about programming work that is not complete
or features that are not implemented.

Syntax
@todo description

Comments

Thistag is for developers and does not generate output for external (user ed) builds. Use the
@comm tag to create comments that appear in external builds.

See Also
@devnote

@topic (topic-level)

Creates an overview topic. To create links to a contents topic, use the <I text tag.

Syntax
@topic Topic Heading | Topic Text

See Also
<|

@type (topic-level)

The @type tag is atopic tag used to document data types (generally typedefs).

Syntax
@type type_name | description

Example
The following example shows the @type tag:

/'l @ype OLECLI PFORMAT | Standard clipboard format.

See Also
@struct

@xref (paragraph-level)

The @xref tag is used to document cross references to other related topics.

Syntax
@xref cross references

Comments

The cross references field is a block of text similar to the description field in topic tags.
Usually this field consists of a whitespace-separated list of related topics. To properly
generate hypertext links in Help, cross references must be properly type formatted.

Example
The following example shows the @xr ef tag:

/'l @ref <c CRect> <c CPoint> <nf CRect.Equal Rect >
/'l <nf CRect.I|nfl ateRect >

<bmp

The <bmp tag lets you insert a bitmap file.

Syntax
<bmp bitmap filename>

Example
The following paragraph includes the bitmap CADOC\CLASSD.DIB:

The following illustration shows the class hierarchy:
<bnp c\:/doc/cl assd\. di b>

Comments

When specifying a full path name, use forward slashes instead of backslashes, and be sure to
escape any periods or colons in the path name.

<C

The <c tag is used to identify references to classes.

Syntax
<c class name>

<Cp

The <cp tag is used to generate a copyright symbol (©).

Syntax
<cp>

<date

Inserts the date of the Autoduck build.

Syntax
<date>

<€

The <e tag is used to identify references to structure members.

Syntax
<e type name.member name>

<em-

The <em- tag is used to generate an em dash character (—).

Syntax
<em->

See Also
<en-

<en-

The <en- tag is used to generate an en dash character (-).

Syntax
<en->

See Also
<em-

<f

The <f tag is used to identify references to functions and macros.

Syntax
<f function name>

<filename

Inserts the source filename.

Syntax
<filename>

<filepath

Inserts the source file path.

Syntax
<filepath>

<gt
The <gt tag is used to generate a greater-than symbol (>).

Syntax
<gt>

See Also
<It

<i
The <i tag is used to identify OLE interface names.

Syntax
<i interface name>

<Im
The <im tag is used to identify references to interface methods.
Syntax
<im interface method>

<|

Inserts a hypertext link to an overview topic.

Syntax
<| overview topic title>

Comments

Be sure to duplicate the overview topic exactly as it appeared in the @topic tag, including
embedded spaces and punctuation.

See Also

@topic

<lg

Inserts a left quote.

Syntax
<lg>

See Also
<rq

<It

The <It tag is used to generate aless-than symbol (<).

Syntax
<lt>

See Also
<qgt

<m
The <m tag is used to identify references to messages.
Syntax
<m message name>
<md
The <md tag is used to identify references to class member data.
Syntax
<md class name::member name>
<mf
The <mf tag is used to identify references to class member functions.
Syntax
<mf class name:member function name>
<nl

The <nl tag is used to generate a new line character.

Syntax
<nl>

<0

The <o tag is used to identify references to OLE COM objects.

Syntax
<0 object name>

<0e

The <oe tag is used to identify references to OLE2 object events.

Syntax
<om interface name.event name>

Comments

Y ou can omit the interface name if the event belongs to the same interface as the method,
property, or event being described. Y ou must still include the period before the event name.

<om

The <om tag is used to identify references to methods in OLE COM object interfaces.

Syntax
<om interface name.method name>

Comments

Y ou can omit the interface name if the method belongs to the same interface as the method,
property, or event being described. Y ou must still include the period before the method name.

<Op

The <op tag is used to identify references to properties defined for OLE2 COM objects.

Syntax
<op interface name.property name >

Comments

Y ou can omit the interface name if the property belongs to the same interface as the method,

property, or event being described. Y ou must still include the period before the property
name.

<p
The <p tag is used to identify references to parameters.

Syntax
<p parameter name>

<rq

Inserts a right quote.

Syntax
<ro>

See Also
<|q

<rtm

The <rtm tag is used to generate a registered trademark symbol (®).

Syntax
<rtm>

See Also
<tm

<t

The <t tag is used to identify references to structure and enumeration types.

Syntax
<t type name>

<tab

Inserts a tab symbol.

Syntax
<tab>

<tm

The <tm tag is used to generate a trademark symbol (™).

Syntax
<tm>

See Also
<rtm

