
An Abbreviated C++

Code Inspection Checklist

John T. Baldwin
October 27, 1992

Copyright © 1992 by John T. Baldwin.
See rear page for complete information concerning copyright permission, sources, and distribution.

How to Conduct an Informal Code Inspection

1. Code inspector teams consist of 2-5 individuals. The author of the code to be inspected is
not part of the initial inspection team! A code inspection is not a witch hunt — so no
witch-hunting! Our purpose here is to improve the code, not to evaluate developers.

2. To get ready for the inspection, print separate hardcopies of the source code for each
inspector. A single code inspector should cover no more than 250 source code lines,
including comments, but not including whitespace. Surprisingly enough, this is a "carved
in stone" limit! The hardcopy should contain a count of the source code lines shown.

3. Inspection overview. The code author spends 20 - 40 minutes explaining the general
layout of the code to the inspectors. The inspectors are not allowed to ask questions — the
code is supposed to answer them, but this overview is designed to speed up the process.
The author's goal is to stick to the major, important points, and keep it as close to 20
minutes as possible without undercutting the explanation.

4. Individual inspections. Each inspector uses the attached checklist to try to put forward a
maximum number of discovered possible defects. This should be done in a single,
uninterrupted sitting. The inspector should have a goal of covering 70-120 source lines of
code per hour. Use the source line counts on the hardcopy, and strive not to inspect too
quickly, nor too slowly! [This has been shown in several studies to be the next major
factor after programming experience which affects the number of errors found. There is a
sharp drop-off beyond 122 sloc/hr, so don't rush!]

To do the inspection, go through the code line by line, attempting to fully understand what
you are reading. At each line or block of code, skim through the inspection checklist,
looking for questions which apply. For each applicable question, find whether the answer
is "yes." A yes answer means a probable defect. Write it down. You will notice that some
of the questions are very low-level and concern themselves with syntactical details, while
others are high-level and require an understanding of what a block of code does. Be
prepared to change your mental focus.

5. Meeting. The meeting is attended by all the code inspectors for that chunk of code. If you
want this to be more like a formal inspection, the meeting should have a moderator who is
well experienced in C or C++, and in conducting code inspections, and the author of the
code should not be present. To be more like a walkthrough, the moderator may be omitted,
or the author may be present, or both. If the author is present, it is for the purpose of
collecting feedback, not for defending or explaining the code. Remember, one of the major
purposes of the inspection is to ensure that the code is sufficiently self-explanatory.

Each meeting is strictly limited to two hours duration, including interruptions. This is
because inspection ability generally drops off after this amount of time. Strive to stay on
task, and to not allow interruptions.

Page 1

Different inspectors may cover different groups of code for a single meeting. Thus, a
single meeting could theoretically cover a maximum of (5 inspectors) × (120 sloc/hr) × (2
hrs) = 1200 lines of source code. In actuality, there should be some overlap between
inspectors, up to the case of everyone having inspected the same code.

If the group is not finished at the end of two hours, quit. Do not attempt to push ahead.
The moderator or note taker should submit the existing notes to the author or maintainer,
and the remaining material should be covered in a subsequent meeting.

6. Rework. The defects list is submitted to the author, or to another assigned individual for
"rework." This can consist of changing code, adding or deleting comments, restructuring
or relocating things, etc. Note that solutions are not discussed at the inspection meeting!
They are neither productive nor necessary in that setting. If the author/maintainer desires
feedback on solutions or improvements, he or she may hold a short meeting with any or all
of the inspectors, following the code inspection meeting. The "improvements" meeting is
led by the author/maintainer, who is free to accept or reject any suggestions from the
attenders.

7. Follow up. It is the moderator's personal responsibility to ensure all defects have been
satisfactorily reworked. If there is no formal moderator, then an individual is selected for
this role at the inspection meeting. The correctness of the rework will be verified either at
a short review meeting, or during later inspection stages during the project.

8. Record keeping. In order to objectively track success in detecting and correcting defects,
one of the by-products of the meeting will be a count of the total number of different types
of potential defects noted. In order to eliminate both the perception and the possibility that
the records will be used to evaluate developers (remember, the goal is to improve the
software), then neither the name of the author nor the source module will be noted in the
defect counts. If absolutely necessary to keep the counts straight, a "code module number"
may be assigned and used. The document containing the pairing of code modules with
their numbers will be maintained by a single individual who has no management
responsibilities on the project, and this document will be destroyed upon completion of the
code development phase of the project.

Page 2

C++ Inspection Checklist

1 VARIABLE DECLARATIONS

1.1 Arrays

1.1.1 Is an array dimensioned to a hard-coded constant?

int intarray[13];

should be

int intarray[TOT_MONTHS+1];

1.1.2 Is the array dimensioned to the total number of items?

char entry[TOTAL_ENTRIES];

should be

char entry[LAST_ENTRY+1];

The first example is extremely error-prone and often gives rise to off-by-one errors in the
code. The preferred (second) method permits the writer to use the LAST_ENTRY identi-
fier to refer to the last item in the array. Instances which require a buffer of a certain size
are rarely rendered invalid by this practice, which results in the buffer being one element
bigger than absolutely necessary.

1.2 Constants

1.2.1 Does the value of the variable never change?

int months_in_year = 12;

should be

const unsigned months_in_year = 12;

1.2.2 Are constants declared with the preprocessor #define mechanism?

#define MAX_FILES 20

should be

const unsigned MAX_FILES = 20;

Page 3

1.2.3 Is the usage of the constant limited to only a few (or perhaps only one) class?
If so, is the constant global?

const unsigned MAX_FOOS = 1000;
const unsigned MAX_FOO_BUFFERS = 40;

should be

class foo {
public:

enum { MAX_INSTANCES = 1000; }
...

private:
enum { MAX_FOO_BUFFERS = 40; }
...

};

If the size of the constant exceeds int, another mechanism is available:

class bar {
public:

static const long MAX_INSTS;
...

};

const long bar::MAX_INSTS = 70000L;

The keyword static ensures there is only one instance of the variable for the entire
class. Static data items are not permitted to be initialized within the class declaration, so
the initialization line must be included in the implementation file for class bar .

Static constant members have one drawback: you cannot use them to declare member
data arrays of a certain size. This is because the value is not available to the compiler at
the point which the array is declared in the class.

1.3 Scalar Variables

1.3.1 Does a negative value of the variable make no sense? If so, is the variable signed?

int age;

should be

unsigned int age;

This is an easy error to make, since the default types are usually signed.

Page 4

1.3.2 Does the code assume char is either signed or unsigned?

typedef char SmallInt;

SmallInt mumble = 280; // WRONG on Borland C++ 3.1
// or MSC/C++ 7.0!

The typedefs should be

typedef unsigned char SmallUInt;
typedef signed char SmallInt;

1.3.3 Does the program unnecessarily use float or double?

double acct_balance;

should be

unsigned long acct_balance;

In general, the only time floating point arithmetic is necessary is in scientific or
navigational calculations. It is slow, and subject to more complex overflow and
underflow behavior than integer math is. Monetary calculations, as above, can often be
handled in counts of cents, and formatted properly on output. Thus, acct_balance
might equal 103446, and print out as $1,034.46.

1.4 Classes

1.4.1 Does the class have any virtual functions? If so, is the destructor non-virtual?

Classes having virtual functions should always have a virtual destructor. This is
necessary since it is likely that you will hold an object of a class with a pointer of a less-
derived type. Making the destructor virtual ensures that the right code will be run if you
delete the object via the pointer.

1.4.2 Does the class have any of the following:

Copy-constructor
Assignment operator
Destructor

If so, it generally will need all three. (Exceptions may occasionally be found for some
classes having a destructor with neither of the other two.)

Page 5

2 DATA USAGE

2.1 Strings

2.1.1 Can the string ever not be null-terminated?

2.1.2 Is the code attempting to use a strxxx() function on a non-terminated char array, as if
it were a string?

2.2 Buffers

2.2.1 Are there always size checks when copying into the buffer?

2.2.2 Can the buffer ever be too small to hold its contents?

For example, one program had no size checks when reading data into a buffer because
the correct data would always fit. But when the file it read was accidentally overwritten
with incorrect data, the program crashed mysteriously.

2.3 Bitfields

2.3.1 Is a bitfield really required for this application?

2.3.2 Are there possible ordering problems (portability)?

3 INITIALIZATION

3.1 Local Variables

3.1.1 Are local variables initialized before being used?

3.1.2 Are C++ locals created, then assigned later?

This practice has been shown to incur up to 350% overhead, compared to the practice of
declaring the variable later in the code, when an initialization variable is known. It is the
simple matter of putting a value in once, instead of assigning some default value, then
later throwing it away and assigning the real value.

Page 6

3.2 Missing Reinitialization

3.2.1 Can a variable carry an old value forward from one loop iteration to the next?

Suppose the processing of a data element in a sequence causes a variable to be set. For
example, a file might be read, and some globals initialized for that file. Can those
globals be used for the next file in the sequence without being re-initialized?

4 MACROS

4.1 If a macro's formal parameter is evaluated more than once, is the macro ever expanded
with a actual parameter having side effects?

For example, what happens in this code:

#define max(a,b) ((a) > (b) ? (a) : (b))
max(i++, j);

4.2 If a macro is not completely parenthesized, is it ever invoked in a way that will cause
unexpected results?

#define max(a, b) (a) > (b) ? (a) : (b)
result = max(i, j) + 3;

This expands into:

result = (i) > (j) ? (i) : (j)+3;

See the example in 4.1 for the correct parenthesization.

4.3 If the macro's arguments are not parenthesized, will this ever cause unexpected results?

#define IsXBitSet(var) (var && bitmask)
result = IsXBitSet(i || j);

This expands into:

result = (i || j && bitmask); // not what expected!

The correct form is:

#define IsXBitSet(var) ((var) && (bitmask))

Page 7

5 SIZING OF DATA

5.1 In a function call with arguments for a buffer and its size, is the argument to sizeof
different from the buffer argument?

For example:

memset(buffer1 , 0, sizeof(buffer2)); // danger!

This is not always an error, but it is a dangerous practice. Each instance should
be verified as (a) necessary, and (b) correct, and then commented as such.

5.2 Is the argument to sizeof an incorrect type?

Common errors:

sizeof(ptr) instead of sizeof(*ptr)

sizeof(*array) instead of sizeof(array)

sizeof(array) instead of sizeof(array[0])
(when the user wanted the size of an element)

6 DYNAMIC ALLOCATION

6.1 Allocating Data

6.1.1 Is too little space being allocated?

6.1.2 Does the code allocate memory and then assume someone else will delete it?

This is not always an error, but should always be prominently documented, along with
the reason for implementing in this manner. Constructors which allocate, paired with
destructors which deallocate, are an obvious exception, since a single object has control
of its class data.

6.1.3 Is malloc(), calloc(), or realloc() used in lieu of new?

C standard library allocation functions should never be used in C++ programs, since C++
provides an allocation operator.

Page 8

If you find you must mix C allocation with C++ allocation:

6.2.2 Is malloc , calloc , or realloc invoked for an object which has a constructor?

Program behavior is undefined if this is done.

6.2 Deallocating Data

6.2.1 Are arrays being deleted as if they were scalars?

delete myCharArray;

should be

delete [] myCharArray;

6.2.2 Does the deleted storage still have pointers to it?

It is recommended that pointers are set to NULL following deletion, or to another safe
value meaning "uninitialized." This is neither necessary nor recommended within
destructors, since the pointer variable itself will cease to exist upon exiting.

6.2.3 Are you deleting already-deleted storage?

This is not possible if the code conforms to 6.2.2. The draft C++ standard specifies that
it is always safe to delete a NULL pointer, so it is not necessary to check for that value.

If C standard library allocators are used in a C++ program (not recommended):

6.2.4 Is delete invoked on a pointer obtained via malloc , calloc , or realloc ?

6.2.5 Is free invoked on a pointer obtained via new?

Both of these practices are dangerous. Program behavior is undefined if you do them, and such
usage is specifically deprecated by the ANSI draft C++ standard.

Page 9

7 POINTERS

7.1 When dereferenced, can the pointer ever be NULL?

7.2 When copying the value of a pointer, should it instead allocate a copy of what the first
pointer points to?

8 CASTING

8.1 Is NULL cast to the correct type when passed as a function argument?

8.2 Does the code rely on an implicit type conversion?

C++ is somewhat charitable when arguments are passed to functions: if no function is
found which exactly matches the types of the arguments supplied, it attempts to apply
certain type conversion rules to find a match. While this saves unnecessary casting, if
more than one function fits the conversion rules, it will result in a compilation error.
Worse, it can cause additions to the type system (either from adding a related class, or
from adding an overloaded function) to cause previously working code to break!

See the Appendix (A) for an example.

9 COMPUTATION

9.1 When testing the value of an assignment or computation, is the parenthesization
incorrect?

if (a = function() == 0)

should be

if ((a = function()) == 0)

9.2 Can any synchronized values not get updated?

Sometimes, a group of variables must be modified as a group to complete a single
conceptual "transaction." If this does not occur all in one place, is it guaranteed that all
variables get updated if a single value changes? Do all updates occur before any of the
values are tested or used?

Page 10

10 CONDITIONALS

10.1 Are exact equality tests used on floating point numbers?

if (someVar == 0.1)

might never be evaluated as true. The constant 0.1 is not exactly representable by any
finite binary mantissa and exponent, thus the compiler must round it to some other
number. Calculations involving someVar may never result in it taking on that value.

Solution: use >, >=, <, or <=, depending on which direction you wish the variable bound.

10.2 Are unsigned values tested greater than or equal to zero?

if (myUnsignedVar >= 0)

will always evaluate true.

10.3 Are signed variables tested for equality to zero or another constant?

if (mySignedVar) // not always good

if (mySignedVar >= 0) // better!

if (mySignedVar <= 0) // opposite case

If the variable is updated by any means other than ++ or --, it may miss the value of the
test constant entirely. This can cause subtle and frightening bugs when code executes
under conditions that weren't planned for.

10.4 If the test is an error check, could the "error condition" actually be legitimate in some
cases?

Page 11

11 FLOW CONTROL

11.1 Control Variables

11.1.1 Is the lower limit an exclusive limit?

11.1.2 Is the upper limit an inclusive limit?

By always using inclusive lower limits and exclusive upper limits, a whole class of off-
by-one errors is eliminated. Furthermore, the following assumptions always apply:

• the size of the interval equals the difference of the two limits

• the limits are equal if the interval is empty

• the upper limit is never less than the lower limit

Examples: instead of saying x>=23 and x<=42 , use x>=23 and x<43 .

11.2 Branching

11.2.1 In a switch statement, is any case not terminated with a break statement?

When several cases are followed by the same block of code, they may be "stacked"
together and the code terminated with a single break .

Cases may also be exited via return .

All other circumstances requiring "drop through" cases should be clearly documented
in a strategic comment before the switch . This should only be used when it makes the
code simpler and clearer.

11.2.2 Does the switch statement lack a default branch?

There should always be a default branch to handle unexpected cases, even when it
appears that the code can never get there.

11.2.3 Does a loop set a boolean flag in order to effect an exit?

Consider using break instead. It is likely to simplify the code.

Page 12

11.2.4 Does the loop contain a continue ?

If the continue occurs in the body of an if conditional, consider replacing it with an
else clause if it will simplify the code.

12 ASSIGNMENT

12.1 Assignment operator

12.1.1 Does "a += b" mean something different than "a = a + b"?

The programmer should never change the semantics of relationships between operators.
For the example here, the two statements above are semantically identical for intrinsic
types (even though the code generated might be different), so for a user defined class,
they should be semantically identical, too. They may, in fact, be implemented differently
(+= should be more efficient).

12.1.2 Is the argument for a copy constructor or assignment operator non-const?

12.1.3 Does the assignment operator fail to test for self-assignment?

The code for operator=() should always start out with:

if (this == &right_hand_arg)
return *this;

12.1.4 Does the assignment operator return anything other than a const reference to this ?

Failure to return a reference to this prevents the user from writing (legal C++):

a = b = c;

Failure to make the return reference const allows the user to write (illegal C++):

(a = b) = c;

12.2 Use of assignment

12.2.1 Can this assignment be replaced with an initialization?

(See question 3.1.2 and commentary.)

Page 13

12.2.2 Is there a mismatch between the units of the expression and those of the variable?

For example, you might be calculating the number of bytes for an array when the number
of elements was requested. If the elements are big (say, a long , or a struct !), you'd
be using way too much memory.

13 ARGUMENT PASSING

13.1 Are non-intrinsic type arguments passed by value?

Foo& do_something(Foo anotherFoo, Bar someThing);

should be

Foo& do_something(const Foo& anotherFoo,
 const Bar& someThing);

While it is cheaper to pass ints , longs , and such by value, passing objects this way
incurs significant expense due to the construction of temporary objects. The problem
becomes more severe when inheritance is involved. Simulate pass-by-value by passing
const references.

14 RETURN VALUES

14.1 Is the return value of a function call being stored in a type that is too narrow?
(See Appendix (B).)

14.2 Does a public member function return a non-const reference or pointer to member data?

14.3 Does a public member function return a non-const reference or pointer to data outside
the object?

This is permissible provided the data was intended to be shared, and this fact is
documented in the source code.

14.4 Does an operator return a reference when it should return an object?

14.5 Are objects returned by value instead of const references?
(See question 13.1 and commentary.)

Page 14

15 FUNCTION CALLS

15,1 Varargs functions (printf, and other functions with ellipsis ...)

15.1.1 Is the FILE argument of fprintf missing? (This happens all the time.)

15.1.2 Are there extra arguments?

15.1.3 Do the argument types explicitly match the conversion specifications in the format
string? (printf and friends.)

Type checking cannot occur for functions with variable length argument lists.

For example, a user was surprised to see nonsensical values when the following code was
executed:

printf(" %d %ld \n", a_long_int, another_long_int);

On that particular system, int s and long s were different sizes (2 and 4 bytes,
respectively). printf() is responsible for manually accessing the stack; thus, it saw
"%d" and grabbed 2 bytes (an int). It then saw "%ld" and grabbed 4 bytes (a long). The
two values printed were the MSW of a_long_int , and the combination of
a_long_int 's LSW and another_long_int 's MSW.

Solution: ensure types explicitly match. If necessary, arguments may be cast to smaller
sizes (long to int) if the author knows for certain that the smaller type can hold all
possible values of the variable.

15.2 General functions

15.2.1 Is this function call correct? That is, should it be a different function with a similar
name? (E.g. strchr instead of strrchr?)

15.2.2 Can this function violate the preconditions of a called function?

Page 15

16 FILES

16.1 Can a temporary file name not be unique?

(This is, surprisingly enough, a common design bug.)

16.2 Is a file pointer reused without closing the previous file?

fp = fopen(...);

fp = fopen(...);

16.3 Is a file not closed in case of an error return?

Page 16

Appendix

A. Errors due to implicit type conversions.

Code which relies upon implicit type conversions may become broken when new classes or
functions are added. For example:

class String {
public:

String(char *arg); // copy constructor
operator const char* () const;
// ...

};

void foo(const String& aString);
void bar(const char *anArray);

// Now, we added the following class

class Word {
public:

Word(char *arg); // copy constructor
// ...

};

// need another foo that works with "Words"
void foo(const Word& aWord);

int gorp()
{

foo("hello"); // This used to work!
// Now it breaks! What gives?

String baz = "quux";
bar(baz); // but this still works.

}

The code worked before class Word and the second foo() were added. Even though there
was no foo() accepting an argument of type const char * (i.e. a constant string like
"hello"), there is a foo() which takes a constant String argument by reference. And
(un)fortunately, there is also a way to convert Strings to char * 's and vice-versa. So the
compiler performed the implicit conversion.

Now, with the addition of class Word , and another foo() which works with it, there is a
problem. The line which calls foo("hello") matches both:

void foo(const String&);

void foo(const Word&);

Since the mechanisms of the failure may be distributed among two or more header files in
addition to the implementation file, along with a lot of other code, it may be difficult to find the
real problem. The easiest solution is to recognize while coding or inspecting that a function call
results in implicit type conversion, and either (a) overload the function to provide an explicitly-
typed variant, or (b) explicitly cast the argument.

Option (a) is preferred over (b), since (b) defeats automatic type checking. Option (a) can still
be implemented very efficiently, simply by writing the new function as a forwarding function
and making it inline.

B. Errors due to loss of "precision" in return values

Functions which can return EOF should not have their return values stored in a char variable.
For example:

int getchar(void);

char chr;

while ((chr = getchar()) != EOF) {
...

};

should be:

int tmpchar;

while ((tmpchar = getchar()) != EOF) {
chr = (char) tmpchar; // or use casted tmpchar
... // throughout...

};

The practice in the top example is unsafe because functions like getchar() may return 257
different values: valid characters with indexes 0 -255, plus EOF (-1). If sizeof(int) >
sizeof(char) , then information will be lost when the high-order byte(s) are scraped off
prior to the test for EOF. This can cause the test to fail. Worse yet, depending on whether char
is signed or unsigned by default on the particular compiler and machine being used, sign-
extension can wreak havoc and cause some of these loops never to terminate.

C. Loop Checklist

The following loops are indexed correctly, and are handy for comparisons when doing
inspections. If the actual code doesn't look like one of these, chances are that something is
wrong — or at least that something could be clearer.

Acceptable forms of for loops which avoid off-by-one errors.

for (i = 0; i <= max_index; ++i)

for (i = 0; i < sizeof(array); ++i)

for (i = max_index; i >= 0; --i)

for (i = max_index; i ; --i)

Copyright Notices

1. Some of the questions applicable to conventional C contained herein were modified or
taken from A Question Catalog for Code Inspections, Copyright © 1992 by Brian Marick.
Portions of his document were Copyright © 1991 by Motorola, Inc., which graciously
granted him rights to those portions.

In conformance with his copyright notice, the following contact information is provided
below:

Brian Marick
Testing Foundations

809 Balboa, Champaign, IL 61820
(217) 351-7228

marick@cs.uiuc.edu, marick@testing.com

"You may copy or modify this document for personal use, provided
you retain the original copyright notice and contact information."

2. Some questions and comment material were modified from Programming in C++, Rules
and Recommendations, Copyright © 1990-1992 by Ellemtel Telecommunication Systems
Laboratories.

In conformance with their copyright notice:

"Permission is granted to any individual or institution to use, copy,
modify, and distribute this document, provided that this complete

copyright and permission notice is maintained
intact in all copies."

3. Finally, all modifications and remaining original material are:

Copyright © 1992 by John T. Baldwin. All Rights Reserved.

John T. Baldwin
1511 Omie Way

Lawrenceville, GA 30243
1-404-339-9621

johnb@searchtech.com

Permission is granted to any institution or individual to copy, modify, distribute, and use
this document, provided that the complete copyright, permission, and contact information
applicable to all copyright holders specified herein remains intact in all copies of this
document.

